The Diablo II Messaging System
Introduction

Welcome to the Diablo II Messaging Tutorial! This document accompanies the Messaging System Plugin available at the Phrozen Keep File Center. The Messaging System allows you, the mod maker, to place Books of Lore throughout the game world, which can be used to deliver messages of your devising to any player in both single player and open multiplayer games. The Messaging System is specific to the version of Diablo II running on your machine, due to the DLL changes required.
You will need several tools to enter and configure your messages, and place Books of Lore throughout the world of Sanctuary. There are three standard D2 file types you will be working with: text database files (extension .txt), string tables (extension .tbl) and area maps (extension .ds1). Modding txt and tbl files is a basic technique which is not covered here. Two programs are available for map editing: Isilweo’s Level Editor and Paul Siramy’s Win_ds1edit. The techniques dicussed later in this tutorial for inserting Books of Lore into maps make use of Paul’s map editor.

Books of Lore have persistence during the game. Once you activate a message at a particular book, you will continue to see the same message each time you read it. (See discussion of town and adventuring books below.)
Diablo, Diablo II and Diablo II Lord of Destruction are trademarks of Blizzard Entertainment, Inc. (“Blizzard” hereafter), and all original content are copyright ©1996-2002 by Blizzard. D2Extra.dll, the D2Extra.dll tutorial and plugin kit, the Diablo II Messaging System, including the plugin and this tutorial are copyright ©2002 by Myhrginoc, except where such copyright is superseded by Blizzard’s precedent copyright. Please provide credit in your mod documentation when using the Message System.
Messages

You are already familiar with scrolling messages, as certain game features already use them. NPC’s, the Tower Tome that starts the Countess Quest, Horazon’s Journal and the Ancient’s Altar all display a popup window in the main screen with a message that scrolls up, synchronized with a speech you hear. The Message System Plugin allows you to add your own scrolling messages to the game. At this point, audio accompaniment is not supported for custom messages. All scrolling messages are stored in tbl files.

A scrolling message has a specific format. The first element is a string key, just like any record in a tbl file. Then there is the body of the message, which itself has certain features. At the beginning of a message you will see a two-digit number; this number is the scrolling speed. Usually set to synchronize the scrolling text to audio accompaniment, a lower number is slower and a higher number is faster. Then you have the message itself, broken up into lines and paragraphs. To terminate a line, add a trailing space and press <enter>. To terminate a paragraph, do not add the trailing space to the last line, but after pressing <enter> type in a single space and press <enter> again. To terminate a message, terminate the final paragraph as before but on the next line press <enter> without the following space.

When you are adding your own messages, you will not be using the standard tbl files discussed in many modmaking documents. A new tbl file is provided in the plugin specifically for your custom messages. This file is used the same way as all other tbl files, with one important exception. The Messaging System does not make use of the hash system for display strings, so the string key is ignored. Be sure to use the same string key for each message and use index numbers for all filter references. If (and only if) you use out-of-sequence index numbers in your filter table, you will need to count your messages and assign the correct index numbers. The string table loading function does not track them for you.
[image: image1.png]
Sample Message for a Rogue Camp Book of Lore

Message Variables

The Messaging System provides a method for customizing messages within the context of a game. The following string sequences are variables that will be filled in at display time by the appropriate text information.

##00 — Character Name

##01 — Character Class

##02 — Character Level (format “Level 32”)
##03 — Game Difficulty
##04 — Game Act (format “Act 3”)
##05 — Game Area
You can define your own variable handlers, if you are familiar with assembly language and skilled with a debugger. The game will recognize up to 100 variables, from ##00 to ##99. The variables are individually handled by functions written into D2Extra.dll. A function reference table is provided, beginning at address 6F7F6C00. The two digits represent an offset in dwords from that base address, so variable ##00 will have a function starting address stored at 6F7F6C00, variable ##01 at 6F7F6C04, and so on. You will need to write your functions elsewhere in D2Extra.dll and put the starting address (not offset!) in the appropriate lookup slot. These addresses must be written in Intel order, least significant byte first. So if your function starts at 6F731040, you would put 40 10 73 6F in the lookup slot.
Filters

The txt file included in this plugin is used to provide criteria by which messages may or may not be available at any book. The index number is used to provide a link to an out-of-sequence message. Otherwise leave the field blank and the first filter will apply to the first message, the second filter to the second message, and so on.
You must have a filter record in this table for every message record in the message string table. The provision for out-of-sequence filter records is to allow you to re-order your filters without having to shift message strings or entire filter records around in the files. Therefore, if you declare one message to be out of sequence, you must assign another message to the other filter already at that sequence. For example, you make Filter #13 correspond to Message #11. Therefore you must make Filter #11 correspond to Message #13. You can also chain through several out-of-sequence shifts, as long as you return to where you started. So you could have the sequence #13 (#11, #11 (#17, #17 (#13.
[image: image2.png]
Sample Filter Table

Filter conditions are Game Difficulty, Act, Area (a.k.a. dungeon or game level), Player Class, Player Minimum Level, and Player Maximum Level. There are also two special fields, Town and AllSame. If a message has no filters set, it is available to all players at all times, outside of towns. If the town field is set to 1, the message is available in towns but not outside of towns. If AllSame is set to 1, then the first player will set the message for all other players, except where other conditions are set and other players do not qualify to read the message.

The Description field is an optional field for your notes, and does not get loaded in the game. The Term field is required to preserve the database structure, especially when using spreadsheets that adjust record ends. Microsoft Excel is notorious for this behavior. Always put some value in this field, it is ignored on loading.

Difficulty and Act filters have slightly different values than what you might expect reading other tables. Difficulty can be 1 = Normal, 2 = Nightmare and 3 = Hell; 0 or blank = “don’t care”. Acts are numbered from 1 to 5 as you see in the titles, and “don’t care” is 0 or blank. Areas are the ID numbers from Levels.txt, again 0 or blank is “don’t care”. Player Class filters are the three-letter class codes from PlayerClass.txt, leave blank for “don’t care”. Minimum and maximum player levels are as you would expect, but if you set the maximum level lower than the minimum level the maximum will be ignored.

Regardless of other settings, the Player Class filter requires a matching character class to view the message. The minimum and maximum Player Levels are lower and upper bounds at all times.

The Town field affects how the message system uses the Difficulty, Act, and Area filters. When adventuring outside of town, these filters are minimums. If you are in Hell difficulty, you can read messages where the Difficulty filter is set for Nightmare. Anybody in Act 4 can read a message with Act 2 minimum. You can read a message you needed to make Arcane Sanctuary to see, all the way through the later areas. But for messages filtered as town messages, they are only available if you match the filter condition exactly. So a town message set for Act 2 is only visible in Lut Gholein, and a town message set for Nightmare difficulty is not visible in a Hell difficulty game. The Area filter is ignored for town messages because there is only one town per act; use the Act filter instead.
By now you are surely asking, “what the heck is this about?” The distinction between town messages and adventuring messages is based on risk. A town message is safely read without venturing into dangerous territory. Therefore town messages will usually be greetings and generic statements. The requirement for filter matching allows the modmaker to target specific messages for precise conditions. A town message for a Normal game, Act 1 and maximum character level of 5 would be an excellent filter condition for a newly created character. On the other hand, Hell game, Act 5 and minimum character level of 80 would be a good filter for a message targeted at a player about to achieve the final goal in a three-difficulty series.
Map Editing

The plugin comes with a special version of Obj.txt, the data file used by Paul Siramy’s Windows-based map editor. This version includes the ds1 code for the Book of Lore object. The object is defined as an Act 1 object, but Paul’s editor allows you to use objects from any earlier act into a later act. So you can insert this Act 1 object into any of the other acts. You can also update your existing copy by cloning the Tower Tome entry at record #114, making name changes as shown.
[image: image3.png]
Rogue Camp in Win_ds1edit

You will need to review two txt files, LvlType.txt and LvlPrest.txt, for editing any map with Paul’s editor. The ID codes for each applicable record are used in the batch file that launches the editor. To edit one of the two maps for Lut Gholein, you would have a batch file with the lines
@echo off

win_ds1edit lutW.ds1 12 301 > debug_lutgholein.txt
where 12 is the LvlType.txt ID number for Lut Gholein, and 301 is the corresponding LvlPrest.txt ID number. (The > debug_lutgholein.txt part logs the editor debug data to the text file named after the > symbol.)
Please refer to the Win_ds1edit readme file for further details about Paul’s map editor.
Theory of Operation

The Message System is activated at game startup. As part of the data loading sequence, the message string table and message filter table are copied to memory. Several integrity checks occur, resulting in assertions if they fail. Additional memory is allocated for translating message variables and building a message history for each Book of Lore. This sits in the background as you play the game, until you actually activate a Book.
When you touch an adventuring book, the game checks your player ID against the book’s message history. If your ID number is found, the corresponding message ID is retrieved, and you see the message again. This is the persistence feature mentioned earlier. If your ID is not found, then the game builds a temporary table of all index numbers in the filter table corresponding to messages you are qualified to read at that moment. One message is selected at random and displayed. Your ID and the message ID are posted to the Book’s history record, so any subsequent activation will display the same message for the rest of the game. Town books are not persistent, since they are much more specifically targeted towards greetings and non-critical information.
If you are the first to activate an adventuring Book of Lore, and the message which is selected has the AllSame filter set, then the game checks every player for qualification to read that message. If any other player is so qualified, that player’s ID and the same message ID are posted to the Book’s history. The other players, upon activating the Book with the two IDs logged to the Book’s history, will read the message as if they had activated it earlier and returned to the Book as above.
Diablo II is designed to the client-server model of programming. This means the game mechanics (level loading, monster spawning, combat and treasure calculations, etc.) run on the host machine in a process designated as the server process. The user interface is the client part of the game (animations, messages displayed, character and inventory panels, etc.) which runs in a separate thread. All communication between the server and the client is handled by the game’s network management system, whether the two parts are on the same machine, or distributed halfway around the world and connected by the Internet.

The message system itself has a server component and a client component. The server component handles the mechanics for the Books of Lore, including message history for each Book, filter table administration, and random selection of messages. When a message is selected, a packet is sent to the client containing the message index number. The client receives the packet and retrieves the actual string the index number points to. Then the message string is reviewed for message variables, variable substitution is performed, and the completed message is displayed in the scrolling window.
Components of the Plugin
· messages.tbl, with one sample message suitable for an Act 1 greeting.
· messages.txt, a filter table with one filter that matches the sample message above.

· Modified executable files D2Client.dll, D2Common.dll, D2Extra.dll and D2Game.dll, specific to the version of Diablo II you are running. Also a reference copy of D2Lang.dll which is version specific.
· Modified String.tbl , Objects.txt and ObjType.txt with records for the Book of Lore. Also Use, which goes in data\local in patch_D2.mpq and forces the US (English) language set.

· Set of four Rogue Camp maps with one Book of Lore (test town messages).

· Set of four Den of Evil maps with one Book of Lore (test adventure messages).

· A listing of changes in each DLL, in case you want to use already-altered DLLs and don’t want to repeat your hard work. The listing includes code in assembly language and data in hex.

· This tutorial.
In Closing

I would like to thank Hammerman and Jarulf for valuable advice about ptUnit and ptGame, the dynamic pointer structures. Kudos to Paul Siramy, Isilweo and Baron Darkstorm for such useful modmaking tools. A tip of the big hat for Oleh Yuschuk who wrote Ollydbg, which I used extensively in this project. Many thanks to the members at the Phrozen Keep for encouraging words and helpful advice. And to Blizzard Entertainment (of course) for the great game of Diablo and its successors, which inspired me to go for the gold.

The Messaging System is a brand new feature, and there is always room for improvement. Send me your suggestions and bug reports, either by e-mail or private message at the Phrozen Keep. In particular, if you have a string variable function you would like to see included in the plugin, send your code and ideas my way and they will be added for the benefit of all.
Happy modding!!

Myhrginoc

