Using D2Extra.dll for Diablo II v1.10 – a Tutorial

By Myhrginoc

Scope

This tutorial will cover the application of D2Extra.dll when used with Blizzard DLLs in the Diablo II Lord of Destruction environment. This version is specific to Patch 1.10, due to major differences in the Blizzard DLLs introduced with the new patch.

Using a skeleton DLL for additional code is an expert-level activity. It is not the intent for this guide to instruct the modmaker in assembly level language, except where necessary to convey concepts for procedure handling, stack management, use of imported functions and transfers from and into Blizzard DLLs. Although not required to use the DLL, an introduction to the PE Header is provided in Appendix A as an aid to decoding resources available in all DLLs.

D2Extra.dll cannot be used on a non-Windows machine without full Windows/Intel emulation.

Tools of the Trade

You will need three tools to observe behavior and make changes to game code. This tutorial doesn't cover use of a hex editor or disassembler/debugger, other than specific methods for viewing items discussed herein.

The first tool is the calculator that comes with Windows, Calc.exe. It should be in your C:\Windows directory for Windows 9x systems, and C:\Winnt\System32 for Windows NT systems. Start the calculator, and choose Scientific from the View menu. You now have a decimal-to-hex, hex-to-decimal converter. Just enter a number in either decimal or hex mode, and change the radio button to convert the number.

The next tool needed is a hex editor. There are several programs available for download, some are free. Although Ollydbg contains a hex editor, copying and pasting blocks of hex data is easier with one of these tools.

The last and most important tool is a disassembler/debugger. Two disassemblers available for free download are Ollydbg and W32dsm87 (demo version). Neither disassembler is perfect, but W32dsm87 will not load the extra DLL. Other disassemblers might work fine, but I have no experience with them. Throughout the tutorial I will use Ollydbg-style references for imported functions, with addresses for the corresponding jump table entries as comments. Two known problems exist with Ollydbg in this context. If you use the Analyze Code command on D2Extra, Ollydbg has trouble resolving the method we use to move into and out of the DLL. The debugger will attempt to treat our instructions as data. Also, the 21,760 empty procedures confuse Ollydbg into thinking this DLL has compressed or invalid code.

Loading D2Extra.dll

A new loader using D2Win.dll is provided. D2Win loads at the start, unlike the v1.09x extra DLL which uses D2Client. D2Extra is now loaded right after the game links to the mpq files. As discussed later, this loader can load additional game modules as well!

Structure of D2Extra.dll

There are 21,760 pre-defined "function blocks" consisting of

XOR EAX,EAX

<---- dummy instruction to show recommended start of function

(26) NOP

RETN

<---- C3 return, can be changed to C2 return if cleaning up the stack

(3) NOP

<---- space for word used to complete C2 instruction
If you need a longer routine, just override the next open function block. I have aligned the function blocks on 32-byte boundaries for ease of examination.

These functions start at the beginning of the code section at offset 1000 (or absolute address 6F701000), and continue up to offset AB000 (6F7AB000). Beyond AB000 there are a lot of NOPs (I removed stub calls), but be careful when you get near ADF00. There are some housekeeping functions between offsets ADF00 and ADFFF that must not be corrupted.

The import table works with Ollydbg just like the import tables in the Blizzard DLLs. The jump table begins at offset AE000 (6F7AE000). The numbers in the DLL table below are the starting addresses for each DLL's block of jump records. If you call the address of a jump record, you will get redirected to the corresponding function in the referenced DLL. You can see this in Ollydbg when you File | Attach and look at a jump record, it will appear in the symbolic form

Jmp dword ptr ds:[<&{Blizzard-DLL}.#{ordinal}>]

A separate file “D2Extra Jump Table.txt” lists the absolute addresses to the jump table entries. Although Ollydbg displays imported functions as above, you cannot use the symbolic reference yourself. Instead, call the absolute address. For example, to call D2Common.10519 you look up the address in the jump table, which is 6F7AEE70, and use that as the target of your call.

This DLL has a complete import table for all exported functions in the following DLLs:

D2CMP.dll

6F7AE000

D2Common.dll
6F7AE282

D2Gdi.dll

6F7AFDEE

D2Gfx.dll

6F7AFE06
D2Lang.dll

6F7AFFF8

D2MCPClient.dll
6F7B0172
D2Net.dll

6F7B02EC
D2Sound.dll

6F7B03C4

D2Win.dll

6F7B056E
Fog.dll

6F7B0A42
Storm.dll

6F7B0FE2
In addition, the Kernel functions GetModuleHandle and GetProcAddress are imported, at 6F7B17FE and 6F7B1804 respectively. These functions are useful for obtaining the address of an exported function indirectly, if you are calling one that isn’t included in the jump table. The algorithm for obtaining the function address is shown in this example:

PUSH D2Extra.6F7E4DC0 ; /pModule = "kernel32.dll"

CALL <JMP.&kernel32.GetModuleHandleA> ; \GetModuleHandleA

PUSH D2Extra.6F7E4E57 ; /ProcNameOrOrdinal = "lstrlen"

PUSH EAX ; |hModule

CALL <JMP.&kernel32.GetProcAddress> ; \GetProcAddress
You have two large blocks of free space for data also. Read-only data is available from offset B4590 to E249F (188,176 bytes), this is for constants, reference tables, fixed pointers and strings. The other sections of read-only data (B2000 to B458F, E2400 to E4FFF) should be left alone as those areas are used for critical DLL handling data. Read-write data is also available from offset E5000 to 10CEFF (163,584 bytes). The first 48 bytes are already pre-loaded with game difficulties which you can use, edit or replace with other data.
Using D2Extra.dll

You cannot use direct near calls from one DLL into another DLL. The first problem is that Blizzard DLLs are not guaranteed to load at their preferred addresses every time, they are relocatable by Windows. The second problem is direct near calls can only call other code in the same section, and moving between DLLs moves between sections. Direct jumps across DLL bounds will generate those notorious c0000005 access violations. For Blizzard DLLs, or calling from D2Extra into a Blizzard DLL this is no problem, you use the jump table in the calling DLL to access the imported function in the destination DLL.

D2Extra is different. There is nowhere near enough space remaining in the Blizzard DLLs to set up an import table for functions in D2Extra, so there are no user functions exported from the new DLL. Because there are no exports, it is important that D2Extra always loads at the same address in the Diablo II process space; the DLL is fixed instead of relocatable. Being fixed, it is possible to dependably call between a Blizzard DLL and the new DLL using indirect calls.

An indirect call has two parts, the instruction and the pointer. The pointer is a dword that holds the address of the function in D2Extra. The instruction is a CALL that has the address of the pointer in square brackets. Example:

6FC7ED59 CALL [6FD2BC10]
<--- pointer address in brackets

6FD2BC10 6F701000

<--- pointer contains address of D2Extra function

Returning from D2Extra is simple. There are already returns in place (three byte sequence C3 90 90), you can use the nearest existing one or move it forward to the end of your code. If you push parameters onto the stack before you call to D2Extra.dll, you have to pop them at the return. The easiest way to clean up the stack is to count the number of parameters you pushed, multiply by four and use the RETN ## form (C2 ## 00, where ## is 4 bytes for each parameter).

You can also transfer back and forth using indirect near jump instructions. Just as you do for the CALL above, you set up a pointer for each jump, and reference the pointer in square brackets. So you could have:

6FC7ED59 JMP [6FD2BC10]
<--- pointer address in brackets

6FD2BC10 6F701000

<--- pointer contains address of D2Extra function

6F701000 JMP [6F7B45A0]
<--- pointer address in brackets

6F7B45A0 6FC7ED64

<--- pointer contains address of next instruction in D2Game
Case #1 -- Simple Functions

We will start with a basic application, changing the skills/level so one additional skill point is awarded at Level 4 and every fourth level thereafter. In D2Game (v1.09b) you can find this code

6FC7ED59 PUSH 0

6FC7ED5B PUSH EDI

6FC7ED5C PUSH 5

6FC7ED5E PUSH ESI

6FC7ED5F CALL <JMP.&D2Common.#10518> <---- Jump at 6FD1B8BA
There aren't enough bytes (only eleven altogether) to customize this function. We will replace the code in D2Game with a call to D2Extra, and handle the skills/level award in D2Extra. We will use the call from the example above, which is already formatted to access the first of the 21,760 predefined function blocks. Replace remaining bytes with NOP instructions. Then jump up to the data section and put the pointer value in place.

Now in D2Extra we will build the actual function. The new code will access the character data for current level, test the level to see if divisible by four, and award an extra skill point if level is divisible by four.

6F701000 PUSH 0

6F701002 PUSH 0C

6F701004 PUSH ESI

6F701005 CALL <JMP.&D2Common.#10519> <---- Jump at 6F7AEE70
6F70100A MOV EBX,EAX

6F70100C SHR EBX,2

6F70100F SHL EBX,2

6F701012 XOR EDX,EDX

6F701014 CMP EAX,EBX

6F701016 JNZ SHORT d2extra.6F701017

6F701018 INC EDX

6F701019 INC EDX

6F70101A PUSH 0

6F70101C PUSH EDX

6F70101D PUSH 5

6F70101F PUSH ESI

6F701020 CALL <JMP.&D2Common.#10518> <---- Jump at 6F7AEE70
6F701025 RETN

You can NOP the existing return instruction at 6F70103C.

Parameters and the Stack

The game uses one primary stack which is accessible for passing information into and out of D2Extra. You can either push data onto and pop it off of the stack, or you can access stack locations with stack arithmetic. The stack has three registers associated with it, the Stack Segment Register (SS) which establishes the bottom of the stack memory block, the Extended Base Pointer Register (EBP), and the Extended Stack Pointer Register (ESP). On Windows machines, the stack starts at the top of the memory block and grows downward towards the value in SS as information is added to it. Stack data must always be transferred in dwords, even if the data itself starts out as bytes or words outside of the stack. The ESP is always moved to point to the location dividing accumulated stack and free memory within the stack block, this location is called the top of the stack even though it grows downward.
Some instructions move the pointer automatically, such as PUSH, POP, CALL and RETN. Another way to move the pointer is by ADD or SUB instructions where a constant is added or subtracted from ESP. We will look at both methods in the following discussion.

The procedure in the preceding example received one parameter stored in the ESI register, the character pointer, and did not return any values to the calling code. Although any procedure can receive and deliver parameters through registers, a more common way is to push data on the stack. An example is the call to D2Common.#10518 above: four parameters are pushed and then the function is called. When you push a parameter, the system automatically subtracts four from whatever value is in ESP and a dword is added to the stack. To reverse the process, you pop a dword off of the stack and the system automatically adds four to the ESP.

Another way ESP gets changed automatically is the CALL and RETN instruction pair. In the example above, in D2Game you CALL the new procedure in D2Extra. The system automatically subtracts four from ESP and pushes the Extended Instruction Pointer (EIP) onto the stack. The last instruction in the procedure, RETN, pops the dword at the top of the stack into EIP and adds four to ESP. There are two forms of RETN, one as above which just pops the EIP, and another which pops additional bytes which were pushed as parameters. So inside the code for D2Common.#10518 you would see sixteen extra bytes popped for the four parameters that function receives, and its finishing instruction would be RETN 0C. Bytes popped off in this manner are thrown away.

Why use parameters and the stack? The most important reason is register preservation. You may have a value in EAX that you want to preserve, and a procedure such as the skills/level above would trash your value several times over. So you would PUSH EAX before calling your parameters and POP EAX after you return. The second reason is parameter preservation, you may need a value several times and your code might change it in between accesses. If you had to use ESI in between the two functions from D2Common, you could push ESI onto the stack, enter the procedure, then access it as shown below each time you called one of the D2Common functions. It would not matter how much you changed ESI in between functions.

In high-level languages such as Visual Basic and C++, you will often be working with local variables inside of procedures. These variables are accessible only when the procedure is executing. Assembly language has a similar mechanism, by establishing a stack frame and allocating space on the stack for local variables. In fact, that space exists only when the procedure is running! The purpose of a stack frame is to provide a structured approach to assembly language. Diablo II code uses stack frames for many procedures, but not all that could use frames. You can recognize the presence of a stack frame when you see

PUSH EBP

<------saves the previous stack frame when nesting frames

MOV EBP,ESP

<------sets the new stack frame

SUB ESP, ###
<------assigns space for local variables

at the beginning of a procedure, and

LEAVE

RETN (or RETN ##)

at the procedure's end. This introduces the third pair of instructions that automatically change ESP: ENTER and LEAVE. Diablo II does not use the ENTER instruction (this must be a vagary of Visual C++); instead the equivalent of ENTER is coded by the three instructions shown above at the beginning of procedures. The LEAVE instruction throws away all this allocated space by copying EBP into ESP and then popping the next higher dword into EBP---effectively reversing the three instructions at the beginning of the procedure.

Now how do you use any of this in your procedures? Stack arithmetic gets you access to parameters and local variables! You will see many instructions similar to

MOV ESI,DWORD PTR SS:[ESP+18]

CMP DWORD PTR SS:[EBP+8],EDI

ADD DWORD PTR SS:[ESP+C],EAX

These instructions are accessing information on the stack, by counting up from either EBP or ESP. So if you create a stack frame and push parameters, you would count upward from EBP or ESP to reach the dword of interest. And to access local variables in a stack frame, you would count up from ESP or down from EBP to find your dword. Keep in mind, the first dword above the dword pointed to by EBP is the EIP of the previous CALL instruction, so be careful not to change that value or the program will get lost and crash.

Case #2 -- Simple Function With Parameter

We return to the earlier function and revise it to the structured approach described above. Why would we do this when it seems like so much work? Look closely at the two functions: we didn't change EBX or EDX the second time around. So any value could have been in them, and (assuming the D2Common functions either had register preservation or didn't use them), the values would pass this procedure unscathed. You could have pushed the registers before the call, but then you would have had to pop them afterwards...and we have only eleven bytes to work with at the location in D2Game. This time it would work...but you might not have enough bytes every time. Here is the Case #1 revision rewritten as a one-parameter function:
6FC72259 PUSH ESI

<---- ESP drops by 4

6FC7ED5A CALL [6FD2BC10]

<---- ESP drops by 4

6F701000 PUSH EBP

<---- ESP drops by 4

6F701001 MOV EBP,ESP

6F701003 SUB ESP,4

<---- ESP drops by 4, make local variable
6F701006 PUSH 0

<---- ESP drops by 4
6F701008 PUSH 0C

<---- ESP drops by 4
6F70100A MOV ESI,DWORD PTR SS:[ESP+14]
<---- so we need 20 bytes up to get our parameter

6F70100E PUSH ESI

<---- ESP drops by 4
6F70100F CALL <JMP.&D2Common.#10519>
<---- Jump at 6F7AEE70 (rises 12 bytes on return)
6F701014 MOV DWORD PTR SS:[ESP],EAX
<---- use local variable
6F701017 SHR EAX,2

6F70101A SHL EAX,2

6F70101D XOR ESI,ESI

6F70101E CMP DWORD PTR SS:[ESP],EAX

6F701022 JNZ SHORT d2extra.6F701025
6F701024 INC ESI

6F701025 INC ESI

6F701026 PUSH 0

<---- ESP drops by 4
6F701028 PUSH ESI

<---- ESP drops by 4
6F701029 PUSH 5

<---- ESP drops by 4
6F70102B MOV ESI,DWORD PTR SS:[ESP+20]
<---- we used ESI so we need our parameter again

6F70102F PUSH ESI

<---- ESP drops by 4
6F701030 CALL <JMP.&D2Common.#10518>
<---- Jump at 6F7AEE6A (rises 16 bytes on return)
6F701035 LEAVE

<---- ESP rises by 8

6F701036 RETN 4

<---- ESP rises by 8

You may notice we stretched further the second time we retrieved our parameter. That is because we made three more pushes right before getting it, so ESP is another twelve bytes down. It is worth emphasizing that all stack operations must involve multiples of four bytes or your stack will get misaligned, and you will crash. Instructions like PUSH and CALL do this for you, but ADD and SUB do not---you must maintain stack alignment yourself with these instructions.

Not all procedures use stack frames to set up local variables. You might see a procedure begin with SUB ESP,0C and right before the return would be ADD ESP,0C. This does the local variable allocation part of the ENTER/LEAVE pair, without setting up a separate stack frame. Either way, be sure you clean up parameters with the RETN ## form.
Even in a simple case like this, stack arithmetic can be confusing. It is important to keep a close eye on what you are doing with your stack!

You Can't Take It With You

There are times when you want to move a procedure from a Blizzard DLL into D2Extra so you can expand it. But what about procedures that call other procedures inside the source module, if those procedures are not exported? The answer is, you can call back to the Blizzard code the same way you reached out to D2Extra. There is plenty of space in the data section starting at 6F7B7000 for more references than you will probably ever need. Set a DWORD pointer to the address of the procedure you want in D2Extra's data section. Then call the procedure address using the same indirect near call method we have used in the previous examples. Push parameters on the stack as you might need, it all works the same way.

But...

There are two dangers you need to keep in mind. The first danger is version dependency. Up to now, everything went from Blizzard code to our code, and all calls from our code were through the D2Extra import table. If we are not calling an exported function and working through the import jump table, then the address we are calling must remain constant. And function addresses change between DLL versions! So at this point your D2Extra code becomes fixed to the version of Diablo II you are writing to, and you will need separate versions of your module if you want to support more than one version of 1.10. (We won't even begin to discuss future patches.)

The second danger is base relocations. Blizzard DLLs are built to move around if Windows requires it. It doesn't happen often, but it can happen. Our new DLL cannot move; it must always load at 6F700000 or calls inside Blizzard's DLLs will never find D2Extra. So how do we protect ourselves from base relocations? The best way is to write a separate procedure that can detect where in memory a DLL is loaded. This will use the Windows API function GetModuleHandle to obtain the address where the module actually loaded. You can retrieve your pointer from the data section and pass as a parameter to the relocation procedure, get the module's actual base address, and compare the values between the actual base and the normal base. If different, alter the pointer and return it in a register. Then feed the returned value to the indirect near call using the register as a pointer.
So is there an way to shield ourselves from base relocations? In v1.09 you could make Blizzard DLLs non-relocatable by editing locations in the PE header. But in v1.10 at least one module (usually D2Common.dll) must relocate, because Blizzard did not change any of the base addresses. So fixing dll positions will crash the game. The problem becomes even more thorny if you load additional modules.
The new D2Win loader is capable of loading up to nine DLLs after D2Extra. The byte at offset 0001BBCE indicates the number of custom DLLs to be loaded (preset at 01 for D2Extra), up to 0A for ten total custom modules. Any larger number will be capped at ten. The modules are listed at offset 0001BBE0 in sixteen-byte records. The first record is already filled in for D2Extra.dll. Module names are limited to fifteen characters including the extension. Extra bytes in a name record should be zeroed out.
There are two functions that encapsulate this dilemma for us. The first function is at 6F7ADF00, it initializes a relocation table so you have base addresses and actual load addresses for each DLL. The Blizzard DLLs are preloaded into the table, and D2Extra.dll is already fixed in place. But any additional DLLs need to be entered after the Blizzard DLLs starting at 6F80D000. The table structure is two dwords per record, the first dword being the base address as visible in the PE header. This table is located in the read/write data section at address 6F80CF68; there is space for ten additional records. There are no parameters to the relocation table initializer, and it preserves all flags and registers. The function is called when D2Extra is loaded, so some records are filled in, but not all Blizzard modules are present at that time. It should be called again after all game modules are loaded, such as from D2Client.dll at or near the call to D2Common.10576 (the txt file loader function).

6F80CF60 00 00 00 00 00 00 00 00 00 00 81 6F 00 00 00 00

6F80CF70 00 00 83 6F 00 00 00 00 00 00 84 6F 00 00 00 00

6F80CF80 00 00 88 6F 00 00 00 00 00 00 8A 6F 00 00 00 00

6F80CF90 00 00 98 6F 00 00 00 00 00 00 9A 6F 00 00 00 00

6F80CFA0 00 00 9F 6F 00 00 00 00 00 00 A1 6F 00 00 00 00

6F80CFB0 00 00 A7 6F 00 00 00 00 00 00 C0 6F 00 00 00 00

6F80CFC0 00 00 AA 6F 00 00 00 00 00 00 C1 6F 00 00 00 00

6F80CFD0 00 00 C3 6F 00 00 00 00 00 00 D4 6F 00 00 00 00

6F80CFE0 00 00 DF 6F 00 00 00 00 00 00 F0 6F 00 00 00 00

6F80CFF0 00 00 F5 6F 00 00 00 00 00 00 FB 6F 00 00 00 00

6F80D000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

New module names must be added to the name list, shown below. Names must be entered in the same order as base addresses in the above table, or the second function will yield wrong results. Be sure to remember the null terminator for these strings! You have between 6F7E25F3 and 6F7E2691 for your module strings.
000E2510 4432 476C 6964 652E 646C m.dll.D2Glide.dl

000E2520 6C00 4432 4764 692E 646C 6C00 4432 4469 l.D2Gdi.dll.D2Di

000E2530 7265 6374 3344 2E64 6C6C 0044 3244 4472 rect3D.dll.D2DDr

000E2540 6177 2E64 6C6C 0044 3257 696E 2E64 6C6C aw.dll.D2Win.dll

000E2550 0044 3253 6F75 6E64 2E64 6C6C 0044 324D .D2Sound.dll.D2M

000E2560 756C 7469 2E64 6C6C 0044 324D 4350 436C ulti.dll.D2MCPCl

000E2570 6965 6E74 2E64 6C6C 0044 324C 6175 6E63 ient.dll.D2Launc

000E2580 682E 646C 6C00 4432 4766 782E 646C 6C00 h.dll.D2Gfx.dll.

000E2590 4432 436C 6965 6E74 2E64 6C6C 0044 324E D2Client.dll.D2N

000E25A0 6574 2E64 6C6C 0044 324C 616E 672E 646C et.dll.D2Lang.dl

000E25B0 6C00 4432 4761 6D65 2E64 6C6C 0044 3243 l.D2Game.dll.D2C

000E25C0 6F6D 6D6F 6E2E 646C 6C00 4432 434D 502E ommon.dll.D2CMP.

000E25D0 646C 6C00 424E 436C 6965 6E74 2E64 6C6C dll.BNClient.dll

000E25E0 0046 6F67 2E64 6C6C 0053 746F 726D 2E64 .Fog.dll.Storm.d

000E25F0 6C6C 0000 0000 0000 0000 0000 0000 0000 ll..............

The second function, located at 6F7ADF50, takes a DLL name (from the name list) and an address as parameters and returns the relocated address. Usage is as shown blow:
PUSH 6FD78430

PUSH D2Extra.6F7E25BD ; ASCII "D2Common.dll"

CALL D2Extra.6F7ADF50

This works fine for making calls and jumps or retrieving data from Blizzard DLLs into D2Extra, but what about going the other way? Because Blizzard DLLs do relocate, you have to be very careful about adding references that point to absolute addresses within those relocatable modules. Look at the instruction sequence for loading up to ten custom DLLs, taken from the d2win loader:
6F8B9375 |> 83FB 0A CMP EBX,0A ; maximum allowed is 10

6F8B9378 |. 76 05 JBE SHORT d2win.6F8B937F

6F8B937A |. BB 0A000000 MOV EBX,0A

6F8B937F |> BD E0BB8B6F MOV EBP,d2win.6F8BBBE0 ; ASCII “D2MyModDLL0.dll"

6F8B9384 |> 55 /PUSH EBP ; /FileName

6F8B9385 |. FF15 ECA18B6F |CALL DWORD PTR DS:[<&KERNEL32.LoadLibraryA>]
6F8B938B |. 85C0 |TEST EAX,EAX

6F8B938D |. 75 06 |JNZ SHORT d2win.6F8B9395

6F8B938F |. 55 |PUSH EBP

6F8B9390 |. E8 7BFFFFFF |CALL d2win.6F8B9310

6F8B9395 |> 4B |DEC EBX

6F8B9396 |. 85DB |TEST EBX,EBX

6F8B9398 |.^ 74 D6 |JE SHORT d2win.6F8B9370

6F8B939A |. 83C5 10 |ADD EBP,10

6F8B939D \.^ EB E5 \JMP SHORT d2win.6F8B9384
In this code addresses are used two ways, either relative references such as in conditional jumps and calls within the DLL, or absolute references such as the call to API function LoadLibraryA and the file name string. This listing was copied from Ollydbg, which provides a four-column format where the first column is the instruction address in memory, the second the machine code (what the processor and hex editors see), the third the disassembly listing, and a cmment column. Addresses that are absolute references are shown in the second column with faint underlines (not visible in this copy). Another way to detect an absolute reference is the entire address appears in the machine code column (little-endian, Intel’s reverse byte order) as well as the disassembly column. These are addresses that require adjusting by Windows whenever a DLL is relocated; such adjustments are called fixups.
There are two ways to deal with fixups, neither of which is user-friendly. The first method requires you break down barriers Windows enforces to protect module integrity. The second method requires moving data around in the DLL file itself, which makes it unusable if not done correctly.

The first way to to patch each affected Blizzard DLL in memory, fixing the address or addresses from your own code. The algorithm to do this involves the Windows API function VirtualProtect to open the DLL to access from a “foreign” module within the process, then write the changes to the affected instructions, then call VirtualProtect to restore the normal access rights. Unlike the outbound address patcher at 6F7ADF50, the changes required in the Blizzard DLLs are specific to whatever code you are revising. VirtualProtect is accessible within D2Extra by making a kernel call similar to the “lstrlen” example early in this tutorial. Push 6F7E2728 to get this function’s process address.
The second method is to add your own fixups to Blizzard’s relocation tables. I did this for the D2Win loader, as this method is required when you do not have your custom module loaded yet. Before changing a relocation table, we need some information about its structure. The table consists of a number of variable-length blocks, each block representing one page of memory. For example, the block containing custom code for the D2Win loader is 6F8B9000 through 6F8B9FFF. But a relocation table is based on file offsets, not memory addresses, so we subtract the base address (6F8A0000 for D2Win) to get block 19000. Every absolute reference, regardless of purpose, must be listed in this block.
Here is relocation block 19000 from the D2Win loader:

000238C0 0090 0100 4C00 0000 0C31 2031 L....1 1

000238D0 8731 9A31 1932 2332 3F32 8E32 9432 9A32 .1.1.2#2?2.2.2.2

000238E0 A032 A632 AC32 B232 B832 BE32 C732 FD32 .2.2.2.2.2.2.2.2

000238F0 0533 1633 2F33 3933 3E33 4E33 5C33 6833 .3.3/393>3N3\3h3

00023900 8033 8733 A333 A933 AF33 B433 BE33 C333 .3.3.3.3.3.3.3.3

The format of a relocation table page block is:

 +-----------------------------------+

 | PAGE RVA |

 +-----------------------------------+

 | BLOCK SIZE |

 +-----------------+-----------------+

 | TYPE/OFFSET | TYPE/OFFSET |

 +-----------------+-----------------+

 | TYPE/OFFSET | ... |

 +-----------------+-----------------+
Each row in the diagram is one dword. Page RVA is the relative virtual address of the memory page (same as file offset for code and read-only data). Block Size is in bytes, and includes the Page RVA and Block Size dwords in the total. Then each fixup is a word with three digits for the unrelocated offset within the memory page and a fourth type digit. Blizzard modules all use “high/low” fixups which are type 3. So a fixup for the instruction at 6F8B937F will be 8033. Two things happen here: the fixup is on the instruction’s operand, not the instruction itself. So you ignore the op code and point to the first byte of the address in its operand. And as with all Intel data, it is little-endian so you reverse the bytes. The last bit of relocation theory is each block record must be in dwords, but a fixup record is half a dword. What do you do for odd record count? Simple enough, use a dummy type 0 record at the end: 0000.
Make a list of each instruction in your changed code. If you took an existing absolute reference and merely changed the address in its operand, you are okay---the existing fixup record still pertains. If you change such an instruction and remove the absolute reference, you must remove its fixup by replacing it with a 0000 placeholder. The problem is when you add absolute references, which you will certainly do using indirect calls and jumps to D2Extra. When you are down, you should have a list of your new fixups and the number of additional bytes needed for the relocation table. Organize them by individual memory pages, so you know how many added records you will have for each relocation block. Add up all new records (including type 0 padding) and write the total down somewhere. Now go to the PE header’s .reloc section:
00000250 2E 72 65 6C 6F 63 00 00
ASCII ".reloc"
; SECTION

00000258 360E0000

DD 00000E36
; VirtualSize = E36 (3638.)

0000025C 00C00000

DD 0000C000
; VirtualAddress = C000

00000260 00100000

DD 00001000
; SizeOfRawData = 1000 (4096.)

00000264 00C00000

DD 0000C000
; PointerToRawData = C000

00000268 00000000

DD 00000000
; PointerToRelocations = 0

0000026C 00000000

DD 00000000
; PointerToLineNumbers = 0

00000270 0000

DW 0000

; NumberOfRelocations = 0

00000272 0000

DW 0000

; NumberOfLineNumbers = 0

00000274 40000042

DD 42000040
; Characteristics = INITIALIZED_DATA|DISCARDABLE|READ
Add your byte total to the Virtual Size on paper (not in the file). Does this exceed SizeOfRawData? If so, you are out of luck and need a new approach to this DLL’s changes.

Use either Ollydbg or a PE header viewer to get the file offset for the .reloc section. This is NOT the same offset as the memory image will have, and you need to edit the file. For example, the RVA of D2Win’’s .reloc section is CD000, but the file offset is only 22000! This is because these sections can get moved around when the DLL is loaded. In the section block of the PE header, you can use file offset and RVA interchangeably only if the Virtual Address and the Pointer to Raw Data (a.k.a. Raw Data Offset) are identical.

Now for the dangerous part. Load the DLL with a hex editor and scroll down to the file offset (raw data) of the .reloc section. Continue past, and make note of the offset of your first relocation block. Go past the last record and highlight as many null bytes as you need to add for ONE relocation block (this better be an even number, by the way). Switch to insert mode and cut the selected 00 bytes! Now go up to where your first relocation block ends, put the cursor in front of the Page RVA of the next block and paste-insert the bytes there. Go up to the byte count of your block and increase that number (in hex) by the number of bytes you added. Switch back to Overstrike mode (whew!) and edit the additional bytes with your new fixup records for that memory page. Repeat this procedure for each page you are changing.

In the PE header there are two lines in the “Optional Headers” part (it’s not optional, go figure):

00000180 00C00000

DD 0000C000
; Relocation Table address = C000

00000184 20070000

DD 00000720
; Relocation Table size = 720 (1824.)

You need to increase the Relocation Table Size value by the number of bytes you added to all relocation blocks, including any type 1 padding. Then look at the VirtualSize number in the .reloc section header. Is your expanded relocation table larger than this? Increase it, but be sure you don’t exceed the SizeOfRawData.
I do not know why .reloc sections end up almost twice as large as the actual relocation table.

The Wrap-Up

Using the Extra DLL requires that you take a direct hand managing code execution much more closely than anything you will find in ordinary Windows programming...even Windows programming in assembly. You have to watch how you read or write data, because you are crossing boundaries the operating system was programmed to have. The transfer process will chew up clock cycles in your CPU too, so be sure to avoid many transfers inside of time-critical nested loops. If you want read-only data from one of the Blizzard DLLs, and you will refer to it often, it might pay to copy the data to the new module. Just remember you will have two places to update, should you change the data.

If you are interested in further information, here are some excellent sources.

1) IA-32 Intel Architecture Software Developer's Manual, three volume PDFs at http://developer.intel.com.

 Vol 1: Basic Architecture

 Vol 2: Instruction Set Reference <--- this is the most important one

 Vol 3: System Programming Guide

2) An In-Depth Look into the Win32 Portable Executable File Format, by Matt Pietrek, a two-part series originally published in MSDN Magazine, February and March 2002, available at http://msdn.microsoft.com. Mr. Pietrek also maintains a website at http://www.wheaty.net.

3) Microsoft Platform SDK documentation, from http://msdn.microsoft.com. The price is right --- free --- but you have to download the entire Platform SDK and install it to get the documentation. It is a little under 400MB, so look for the option that lets you download the 25MB modules. The documentation is also available online at http://msdn.microsoft.com, but I find the site is sluggish even with very high speed connections.

4) Iczelion's Win32 Assembly Homepage, http://spiff.tripnet.se/~iczelion/. A great source for assembly language tutorials, resources and links, if you are working in the Windows environment.

5) MASM32, http://www.movsd.com. This is a nifty wrapper for Microsoft Macro Assembler, and a reasonable development environment for assembly language. Not quite an IDE, but very close. And it is free also.

Updates and Errata

I have tested every example to verify they work, but I have Windows XP fully functional only. I do not run a game server, so I don’t know if D2Extra will work in the game server environment. If you find an error, please send me e-mail or Private Message. Also, I recognize there are likely to be other valid methods than I have presented here. If you do find other methods, please send me a brief description and I will include them in the next revision.

Happy coding!

Myhrginoc

November 8, 2003

Appendix A - The Portable Executable (PE) Format

This is a highly condensed introduction. If you want to know the details, read the two-part article by Matt Pietrek cited in the bibliography. The primary reason for this Appendix is to give you enough information to find out where Blizzard code and data ends, and where you can squeeze in your own.

The PE Format has been in use since before Windows 95, and all Blizzard program files are PE files. You can find out a lot about their structure by viewing a block of data at the beginning of each file. Diablo II was compiled and linked for the Windows 98 specification, so all program sections are multiples of 4KB in size. The PE header occupies a slice of the very first section, which is neither code nor data in the ordinary sense. You can view the header in Ollydbg as described earlier, or you can download one of a number of utilities that expose the information in various formats. There is a PE viewer at Matt Pietrek's website, for example.

The header actually starts with a stub in MS-DOS. All Windows executables have stub code just in case you try to run it on an old machine or use it in a command window, and the message "This program cannot be run in DOS mode lives here. One very important location exists in the DOS stub, at offset 3C. The value stored in this location is the offset to the actual start of the PE header. The header can move around from file to file, and vary in size, so this location is the only place you know where to begin before looking into the individual file.

Once you find the PE header, you will see a block of information such as the one below from D2Net.dll. The header consists of three parts, the NT File Header (the first eight locations), the Optional header (everything from offset F8 to offset 1D4 below) and a number of section headers in the last part. The number of section headers is shown in the third entry of the NT File Header.

You will note this DLL has four sections labeled ".text", ".rdata", ".data", and ".reloc". These are default names for code, read-only data, initialized read/write data, and base relocation data. You will see ".rsrc" for resources if a module was compiled with resources (D2Extra is an example, the Version information is a resource).

000000E0 50 45 00 00

ASCII "PE"
; PE signature (PE)

000000E4 4C01

DW 014C

; Machine = IMAGE_FILE_MACHINE_I386

000000E6 0400

DW 0004

; NumberOfSections = 4

000000E8 D34E7C3B

DD 3B7C4ED3
; TimeDateStamp = 3B7C4ED3

000000EC 00000000

DD 00000000
; PointerToSymbolTable = 0

000000F0 00000000

DD 00000000
; NumberOfSymbols = 0

000000F4 E000

DW 00E0

; SizeOfOptionalHeader = E0 (224.)

000000F6 0E21

DW 210E

; Characteristics = DLL|EXECUTABLE_IMAGE|32BIT_MACHINE|LINE_NUMS_STRIPPED|LOCAL_SYMS_STRIPPED

000000F8 0B01

DW 010B

; MagicNumber = PE32

000000FA 06

DB 06

; MajorLinkerVersion = 6

000000FB 00

DB 00

; MinorLinkerVersion = 0

000000FC 00600000

DD 00006000
; SizeOfCode = 6000 (24576.)

00000100 00600000

DD 00006000
; SizeOfInitializedData = 6000 (24576.)

00000104 00000000

DD 00000000
; SizeOfUninitializedData = 0

00000108 CE2B0000

DD 00002BCE
; AddressOfEntryPoint = 2BCE

0000010C 00100000

DD 00001000
; BaseOfCode = 1000

00000110 00700000

DD 00007000
; BaseOfData = 7000

00000114 0000C06F

DD 6FC00000
; ImageBase = 6FC00000

00000118 00100000

DD 00001000
; SectionAlignment = 1000

0000011C 00100000

DD 00001000
; FileAlignment = 1000

00000120 0400

DW 0004

; MajorOSVersion = 4

00000122 0000

DW 0000

; MinorOSVersion = 0

00000124 0000

DW 0000

; MajorImageVersion = 0

00000126 0000

DW 0000

; MinorImageVersion = 0

00000128 0400

DW 0004

; MajorSubsystemVersion = 4

0000012A 0000

DW 0000

; MinorSubsystemVersion = 0

0000012C 00000000

DD 00000000
; Reserved

00000130 00D00000

DD 0000D000
; SizeOfImage = D000 (53248.)

00000134 00100000

DD 00001000
; SizeOfHeaders = 1000 (4096.)

00000138 00000000

DD 00000000
; CheckSum = 0

0000013C 0200

DW 0002

; Subsystem = IMAGE_SUBSYSTEM_WINDOWS_GUI

0000013E 0000

DW 0000

; DLLCharacteristics = 0

00000140 00001000

DD 00100000
; SizeOfStackReserve = 100000 (1048576.)

00000144 00100000

DD 00001000
; SizeOfStackCommit = 1000 (4096.)

00000148 00001000

DD 00100000
; SizeOfHeapReserve = 100000 (1048576.)

0000014C 00100000

DD 00001000
; SizeOfHeapCommit = 1000 (4096.)

00000150 00000000

DD 00000000
; LoaderFlags = 0

00000154 10000000

DD 00000010
; NumberOfRvaAndSizes = 10 (16.)

00000158 507D0000

DD 00007D50
; Export Table address = 7D50

0000015C C6000000

DD 000000C6
; Export Table size = C6 (198.)

00000160 18770000

DD 00007718
; Import Table address = 7718

00000164 64000000

DD 00000064
; Import Table size = 64 (100.)

00000168 00000000

DD 00000000
; Resource Table address = 0

0000016C 00000000

DD 00000000
; Resource Table size = 0

00000170 00000000

DD 00000000
; Exception Table address = 0

00000174 00000000

DD 00000000
; Exception Table size = 0

00000178 00000000

DD 00000000
; Certificate File pointer = 0

0000017C 00000000

DD 00000000
; Certificate Table size = 0

00000180 00C00000

DD 0000C000
; Relocation Table address = C000

00000184 20070000

DD 00000720
; Relocation Table size = 720 (1824.)

00000188 C0710000

DD 000071C0
; Debug Data address = 71C0

0000018C 1C000000

DD 0000001C
; Debug Data size = 1C (28.)

00000190 00000000

DD 00000000
; Architecture Data address = 0

00000194 00000000

DD 00000000
; Architecture Data size = 0

00000198 00000000

DD 00000000
; Global Ptr address = 0

0000019C 00000000

DD 00000000
; Must be 0

000001A0 00000000

DD 00000000
; TLS Table address = 0

000001A4 00000000

DD 00000000
; TLS Table size = 0

000001A8 00000000

DD 00000000
; Load Config Table address = 0

000001AC 00000000

DD 00000000
; Load Config Table size = 0

000001B0 00000000

DD 00000000
; Bound Import Table address = 0

000001B4 00000000

DD 00000000
; Bound Import Table size = 0

000001B8 00700000

DD 00007000
; Import Address Table address = 7000

000001BC B4010000

DD 000001B4
; Import Address Table size = 1B4 (436.)

000001C0 00000000

DD 00000000
; Delay Import Descriptor address = 0

000001C4 00000000

DD 00000000
; Delay Import Descriptor size = 0

000001C8 00000000

DD 00000000
; COM+ Runtime Header address = 0

000001CC 00000000

DD 00000000
; Import Address Table size = 0

000001D0 00000000

DD 00000000
; Reserved

000001D4 00000000

DD 00000000
; Reserved

000001D8 2E 74 65 78 74 00 00 00
ASCII ".text"
; SECTION

000001E0 F0550000

DD 000055F0
; VirtualSize = 55F0 (22000.)

000001E4 00100000

DD 00001000
; VirtualAddress = 1000

000001E8 00600000

DD 00006000
; SizeOfRawData = 6000 (24576.)

000001EC 00100000

DD 00001000
; PointerToRawData = 1000

000001F0 00000000

DD 00000000
; PointerToRelocations = 0

000001F4 00000000

DD 00000000
; PointerToLineNumbers = 0

000001F8 0000

DW 0000

; NumberOfRelocations = 0

000001FA 0000

DW 0000

; NumberOfLineNumbers = 0

000001FC 20000060

DD 60000020
; Characteristics = CODE|EXECUTE|READ

00000200 2E 72 64 61 74 61 00 00
ASCII ".rdata"
; SECTION

00000208 160E0000

DD 00000E16
; VirtualSize = E16 (3606.)

0000020C 00700000

DD 00007000
; VirtualAddress = 7000

00000210 00100000

DD 00001000
; SizeOfRawData = 1000 (4096.)

00000214 00700000

DD 00007000
; PointerToRawData = 7000

00000218 00000000

DD 00000000
; PointerToRelocations = 0

0000021C 00000000

DD 00000000
; PointerToLineNumbers = 0

00000220 0000

DW 0000

; NumberOfRelocations = 0

00000222 0000

DW 0000

; NumberOfLineNumbers = 0

00000224 40000040

DD 40000040
; Characteristics = INITIALIZED_DATA|READ

00000228 2E 64 61 74 61 00 00 00
ASCII ".data"
; SECTION

00000230 00390000

DD 00003900
; VirtualSize = 3900 (14592.)

00000234 00800000

DD 00008000
; VirtualAddress = 8000

00000238 00400000

DD 00004000
; SizeOfRawData = 4000 (16384.)

0000023C 00800000

DD 00008000
; PointerToRawData = 8000

00000240 00000000

DD 00000000
; PointerToRelocations = 0

00000244 00000000

DD 00000000
; PointerToLineNumbers = 0

00000248 0000

DW 0000

; NumberOfRelocations = 0

0000024A 0000

DW 0000

; NumberOfLineNumbers = 0

0000024C 400000C0

DD C0000040
; Characteristics = INITIALIZED_DATA|READ|WRITE

00000250 2E 72 65 6C 6F 63 00 00
ASCII ".reloc"
; SECTION

00000258 360E0000

DD 00000E36
; VirtualSize = E36 (3638.)

0000025C 00C00000

DD 0000C000
; VirtualAddress = C000

00000260 00100000

DD 00001000
; SizeOfRawData = 1000 (4096.)

00000264 00C00000

DD 0000C000
; PointerToRawData = C000

00000268 00000000

DD 00000000
; PointerToRelocations = 0

0000026C 00000000

DD 00000000
; PointerToLineNumbers = 0

00000270 0000

DW 0000

; NumberOfRelocations = 0

00000272 0000

DW 0000

; NumberOfLineNumbers = 0

00000274 40000042

DD 42000040
; Characteristics = INITIALIZED_DATA|DISCARDABLE|READ

Three things are of interest in this structure. First, the value ImageBase = 6FC00000 shows the preferred loading address for this DLL. If you were to make a call to the Windows API function GetModuleHandle, and compare the returned value in EAX to the ImageBase from the PE header, you would know if the module was relocated, what the displacement would be, and what every coded address would have to be adjusted by, in essence you could write your own relocations if you needed to.

Second, each section has slack space where compiled and linked code and data end, but before the next section begins. This space is available for our use. You identify the beginning of slack in any section by adding the VirtualSize to the VirtualAddress (RVA). In this example, the read-only data section starts at RVA 7000 and is E16 bytes in size, so the next available address is 7E16. You can put data in a code block, or code in a data block; these sections are a result of the compiler and have no absolute requirement for function. One section to stay clear of, however, is the .reloc section. This section contains the base relocations Windows will need, in case this DLL cannot be loaded at the preferred address. Not only does it have the relocation tables, the section itself is marked DISCARDABLE, and may disappear on you at some point.

The last item of interest is the Characteristics data at offset F6. In the tutorial we reviewed how to change a relocatable DLL into a fixed-address DLL by changing 210E in this location to 210F. The 16-bit location contains 16 one-bit flags (just like the flags register in the CPU), each one having a separate meaning. The least significant bit of this word is the flag for whether a module is relocatable or not.

Many things in the PE header cannot be changed. But it is safe to change a module's relocation status, and you can also change the VirtualSize of a section. If you added eighty bytes of code to the .text section of D2Net, you might want to change the .text VirtualSize from 55F0 to 5640 so you know where the next available space begins. Or you may want to leave the VirtualSize alone so you know where Blizzard information stops.

END TUTORIAL

Version 1.10 — 11/8/2003

Page 11 of 12

