Using D2Extra.dll – a Tutorial

By Myhrginoc

Scope

This tutorial will cover the application of D2Extra.dll when used with Blizzard DLLs in the Diablo II Lord of Destruction environment. The new DLL was created for use with versions 1.09b and 1.09d, extension to version 1.10 will be developed shortly after release of the upcoming patch.

Using a skeleton DLL for additional code is an expert-level activity. It is not the intent for this guide to instruct the modmaker in assembly level language, except where necessary to convey concepts for procedure handling, stack management, use of imported functions and transfers from and into Blizzard DLLs. Although not required to use the DLL, an introduction to the PE Header is provided in Appendix A as an aid to decoding resources available in all DLLs.

Tools of the Trade

You will need three tools to observe behavior and make changes to game code. This tutorial doesn't cover use of a hex editor or disassembler/debugger, other than specific methods for viewing items discussed herein.

The first tool is the calculator that comes with Windows, Calc.exe. It should be in your C:\Windows directory for Windows 9x systems, and C:\Winnt\System32 for Windows NT systems. Start the calculator, and choose Scientific from the View menu. You now have a decimal-to-hex, hex-to-decimal converter. Just enter a number in either decimal or hex mode, and change the radio button to convert the number.

The next tool needed is a hex editor. There are several programs available for download, some are free. Although Ollydbg contains a hex editor, copying and pasting blocks of hex data is easier with one of these tools.

The last and most important tool is a disassembler/debugger. Two disassemblers available for free download are Ollydbg and W32dsm87 (demo version). Neither disassembler is perfect, but W32dsm87 will not load the extra DLL. Other disassemblers might work fine, but I have no experience with them. Throughout the tutorial I will use Ollydbg-style references for imported functions, with addresses for the corresponding jump table entries as comments. Two known problems exist with Ollydbg in this context. If you use the Analyze Code command on D2Extra, Ollydbg has trouble resolving the method we use to move into and out of the DLL. The debugger will attempt to treat our instructions as data. Also, the 21,760 empty procedures confuse Ollydbg into thinking this DLL has compressed or invalid code.

Loading D2Extra.dll

Most Blizzard DLLs are loaded with game.exe, before the first screen is displayed. Three additional DLLs are loaded when you first select a character and enter a game. In order of loading, these last three are D2Client.dll, D2Common.dll and D2Game.dll. The versions of D2Client.dll provided with d2extra.dll have loader code to bring d2extra.dll into the running process immediately before the game loads the TXT database files. The details of the loader code are provided in Appendix B, in case you have already modified D2Client and do not want to lose or re-apply your changes.

Structure of D2Extra.dll

There are 21,760 pre-defined "function blocks" consisting of

XOR EAX,EAX

<---- dummy instruction to show recommended start of function

(26) NOP

RETN

<---- C3 return, can be changed to C2 return if cleaning up the stack

(3) NOP

<---- space for word used to complete C2 instruction
If you need a longer routine, just override the next open function block. I have aligned the function blocks on 32-byte boundaries for ease of examination.

These functions start at the beginning of the code section at offset 1000 (or absolute address 6F701000), and continue up to offset AB000 (6F7AB000). Beyond AB000 there are a lot of NOPs (I removed stub calls), but be careful when you get past ADF00. There are a couple of housekeeping functions at offsets ADFE0 and ADFF0 that must not be corrupted.

This DLL has a complete import table for all exported functions in the following DLLs:

D2CMP.dll

6F7AE000

D2Common.dll
6F7AE282

D2Gfx.dll

6F7AFE06

D2Lang.dll

6F7AFFF8

D2Sound.dll

6F7B0166

D2Win.dll

6F7B0310

Fog.dll

6F7B07E4

Storm.dll

6F7B0D84

Chances are you won't use anything but D2Common and maybe Fog functions, but if you need them, they are there. I actually had in mind to provide imports for the other DLLs, but Ollydbg doesn't like as many as I could get. Since Ollydbg is a useful tool that many of us like to work with, I pared down some of the less likely DLLs to maintain compatibility with Ollydbg.

The import table works with Ollydbg just like the import tables in the Blizzard DLLs. The jump table begins at offset AE000 (6F7AE000). The numbers in the DLL table above are the starting addresses for each DLL's block of jump records. If you call the address of a jump record, you will get redirected to the corresponding function in the referenced DLL. You can see this in Ollydbg when you File | Attach and look at a jump record, it will appear in the form

Jmp dword ptr ds:[<&{Blizzard-DLL}.#{ordinal}>]

Most of the records are in ordinal sequence, but a few records are out of order, that was the compiler or linker at work. Also some ordinals were skipped, but when I looked in the Blizzard DLLs to make sure they were blanked out in their export tables. I suspect those were functions that might have existed in previous versions.

Using D2Extra.dll

You cannot use direct near calls from one DLL into another DLL. The first problem is that Blizzard DLLs are not guaranteed to load at their preferred addresses every time, they are relocatable by Windows. The second problem is direct near calls can only call other code in the same section, and moving between DLLs moves between sections. For Blizzard DLLs, or calling from D2Extra into a Blizzard DLL this is no problem, you use the jump table in the calling DLL to access the imported function in the destination DLL.

D2Extra is different. There is nowhere near enough space remaining in the Blizzard DLLs to set up an import table for functions in D2Extra, so there are no user functions exported from the new DLL. Because there are no exports, it is important that D2Extra always loads at the same address in the Diablo II process space; the DLL is fixed instead of relocatable. Being fixed, it is possible to dependably call between a Blizzard DLL and the new DLL using indirect calls.

An indirect call has two parts, the instruction and the pointer. The pointer is a dword that holds the address of the function in D2Extra. The instruction is a CALL that has the address of the pointer in square brackets. Example:

6FC7225C CALL [6FD06030]
<--- pointer address in brackets

6FD06030 6F701000

<--- pointer contains address of D2Extra function

Because dwords are stored backwards, when you view the data dump you would see

6FD06030 00 10 70 6F

Returning from D2Extra is simple. There are already returns in place (three byte sequence C3 90 90), you can use the nearest existing one or move it forward to the end of your code. If you push parameters onto the stack before you call to D2Extra.dll, you have to pop them at the return. The easiest way to clean up the stack is to count the number of parameters you pushed, multiply by four and use the RETN ## form (C2 ## 00, where ## is 4 bytes for each parameter).

You can also transfer back and forth using indirect near jump instructions. Just as you do for the CALL above, you set up a pointer for each jump, and reference the pointer in square brackets. So you could have:

6FC7225C JMP [6FD06030]
<--- pointer address in brackets

6FD06030 6F701000

<--- pointer contains address of D2Extra function

6F701000 JMP [6F7B6940]
<--- pointer address in brackets

6F7B6940 6FC72262

<--- pointer contains address of next instruction in D2Game
Case #1 -- Simple Functions

We will start with a basic application, changing the skills/level so one additional skill point is awarded at Level 4 and every fourth level thereafter. In D2Game (v1.09b) you can find this code

6FC7225C PUSH EDI

6FC7225D PUSH 5

6FC7225F PUSH ESI

6FC72260 CALL <JMP.&D2Common.#10518> <---- Jump at 6FCF457E

There aren't enough bytes (only nine altogether) to customize this function. We will replace the code in D2Game with a call to D2Extra, and handle the skills/level award in D2Extra. We will use the call from the example above, which is already formatted to access the first of the 21,760 predefined function blocks. Replace remaining bytes with NOP instructions. Then jump up to the data section and put the pointer value in place.

Now in D2Extra we will build the actual function. The new code will access the character data for current level, test the level to see if divisible by four, and award an extra skill point if level is divisible by four.

6F701000 PUSH 0C

6F701002 PUSH ESI

6F701003 CALL <JMP.&D2Common.#10519> <---- Jump at 6F7AEEAC

6F701008 MOV EBX,EAX

6F70100A SHR EBX,2

6F70100D SHL EBX,2

6F701010 XOR EDX,EDX

6F701012 CMP EAX,EBX

6F701014 JNZ SHORT d2extra.6F701017

6F701016 INC EDX

6F701017 INC EDX

6F701018 PUSH EDX

6F701019 PUSH 5

6F70101B PUSH ESI

6F70101C CALL <JMP.&D2Common.#10518> <---- Jump at 6F7AEEA6

6F701021 RETN

You can NOP the existing return instruction at 6F70103C.

Parameters and the Stack

The game uses one primary stack which is accessible for passing information into and out of D2Extra. You can either push data onto and pop it off of the stack, or you can access stack locations with stack arithmetic. The stack has three registers associated with it, the Stack Segment Register (SS) which establishes the bottom of the stack memory block, the Extended Base Pointer Register (EBP), and the Extended Stack Pointer Register (ESP). On Windows machines, the stack starts at the top of the memory block and grows downward towards the value in SS as information is added to it. Stack data must always be transferred in dwords, even if the data itself starts out as bytes or words outside of the stack. The ESP is always moved to point to the location dividing accumulated stack and free memory within the stack block, this location is called the top of the stack even though it grows downward.

Some instructions move the pointer automatically, such as PUSH, POP, CALL and RETN. Another way to move the pointer is by ADD or SUB instructions where a constant is added or subtracted from ESP. We will look at both methods in the following discussion.

The procedure in the preceding example received one parameter stored in the ESI register, the character pointer, and did not return any values to the calling code. Although any procedure can receive and deliver parameters through registers, a more common way is to push data on the stack. An example is the call to D2Common.#10518 above: three parameters are pushed and then the function is called. When you push data, the system automatically subtracts four from whatever value is in ESP and a dword is added to the stack. To reverse the process, you pop a dword off of the stack and the system automatically adds four to the ESP.

Another way ESP gets changed automatically is the CALL and RETN instruction pair. In the example above, in D2Game you CALL the new procedure in D2Extra. The system automatically subtracts four from ESP and pushes the Extended Instruction Pointer (EIP) onto the stack. The last instruction in the procedure, RETN, pops the dword at the top of the stack into EIP and adds four to ESP. There are two forms of RETN, one as above which just pops the EIP, and another which pops additional bytes which were pushed as parameters. So inside the code for D2Common.#10518 you would see twelve extra bytes popped for the three parameters that function receives, and its finishing instruction would be RETN 0C. Bytes popped off in this manner are thrown away.

Why use parameters and the stack? The most important reason is register preservation. You may have a value in EAX that you want to preserve, and a procedure such as the skills/level above would trash your value several times over. So you would PUSH EAX before calling your parameters and POP EAX after you return. The second reason is parameter preservation, you may need a value several times and your code might change it in between accesses. If you had to use ESI in between the two functions from D2Common, you could push ESI onto the stack, enter the procedure, then access it as shown below each time you called one of the D2Common functions. It would not matter how much you changed ESI in between functions.

In high-level languages such as Visual Basic and C++, you will often be working with local variables inside of procedures. These variables are accessible only when the procedure is executing. Assembly language has a similar mechanism, by establishing a stack frame and allocating space on the stack for local variables. In fact, that space exists only when the procedure is running! The purpose of a stack frame is to provide a structured approach to assembly language. Diablo II code uses stack frames for many procedures, but not all that could use frames. You can recognize the presence of a stack frame when you see

PUSH EBP

<------saves the previous stack frame when nesting frames

MOV EBP,ESP

<------sets the new stack frame

SUB ESP, ###
<------assigns space for local variables

at the beginning of a procedure, and

LEAVE

RETN (or RETN ##)

at the procedure's end. This introduces the third pair of instructions that automatically change ESP: ENTER and LEAVE. Diablo II does not use the ENTER instruction (this must be a vagary of Visual C++); instead the equivalent of ENTER is coded by the three instructions shown above at the beginning of procedures. The LEAVE instruction throws away all this allocated space by copying EBP into ESP and then popping the next higher dword into EBP---effectively reversing the three instructions at the beginning of the procedure.

Now how do you use any of this in your procedures? Stack arithmetic gets you access to parameters and local variables! You will see many instructions similar to

MOV ESI,DWORD PTR SS:[ESP+18]

CMP DWORD PTR SS:[EBP+8],EDI

ADD DWORD PTR SS:[ESP+C],EAX

These instructions are accessing information on the stack, by counting up from either EBP or ESP. So if you create a stack frame and push parameters, you would count upward from EBP or ESP to reach the dword of interest. And to access local variables in a stack frame, you would count up from ESP or down from EBP to find your dword. Keep in mind, the first dword above the dword pointed to by EBP is the EIP of the previous CALL instruction, so be careful not to change that value or the program will get lost and crash.

Case #2 -- Simple Function With Parameter

We return to the earlier function and revise it to the structured approach described above. Why would we do this when it seems like so much work? Look closely at the two functions: we didn't change EBX or EDX the second time around. So any value could have been in them, and (assuming the D2Common functions either had register preservation or didn't use them), the values would pass this procedure unscathed. You could have pushed both registers before the call, but then you would have had to pop them afterwards...and we have only nine bytes to work with at the location in D2Game. This time it would work...but you might not have enough bytes every time.

Again we start with the original code location in D2Game (v1.09b) with new code in D2Extra.

6FC7225C PUSH ESI

<---- ESP drops by 4

6FC7225D CALL [6FD06030]

<---- ESP drops by 4

6F701000 PUSH EBP

<---- ESP drops by 4

6F701001 MOV EBP,ESP

6F701003 SUB ESP,4

<---- ESP drops by 4

6F701006 PUSH 0C

6F701008 MOV ESI,DWORD PTR SS:[ESP+C]
<---- so we need 12 bytes up to get our parameter

6F70100C PUSH ESI

6F70100D CALL <JMP.&D2Common.#10519>
<---- Jump at 6F7AEEAC

6F701012 MOV DWORD PTR SS:[ESP],EAX

6F701015 SHR EAX,2

6F701018 SHL EAX,2

6F70101B XOR ESI,ESI

6F70101D CMP DWORD PTR SS:[ESP],EAX

6F701020 JNZ SHORT d2extra.6F701023

6F701022 INC ESI

6F701023 INC ESI

6F701024 PUSH ESI

6F701025 PUSH 5

6F701027 MOV ESI,DWORD PTR SS:[ESP+14]
<---- we used ESI so we need our parameter again

6F70102B PUSH ESI

6F70102C CALL <JMP.&D2Common.#10518>
<---- Jump at 6F7AEEA6

6F701031 LEAVE

<---- ESP rises by 8

6F701032 RETN 4

<---- ESP rises by 8

You may notice we stretched further the second time we retrieved our parameter. That is because we made two more pushes right before getting it, so ESP is another eight bytes down. It is worth emphasizing that all stack operations must involve multiples of four bytes or your stack will get misaligned, and you will crash. Instructions like PUSH and CALL do this for you, but ADD and SUB do not---you must maintain stack alignment yourself with these instructions.

Not all procedures use stack frames to set up local variables. You might see a procedure begin with SUB ESP,0C and right before the return would be ADD ESP,0C. This does the local variable allocation part of the ENTER/LEAVE pair, without setting up a separate stack frame.

Even in a simple case like this, stack arithmetic can be confusing. It is important to keep a close eye on what you are doing with your stack!

You Can't Take It With You

There are times when you want to move a procedure from a Blizzard DLL into D2Extra so you can expand it. But what about procedures that call other procedures inside the source module, if those procedures are not exported? The answer is, you can call back to the Blizzard code the same way you reached out to D2Extra. There is plenty of space in the data section starting at 6F7B7000 for more references than you will probably ever need. Set a DWORD pointer to the address of the procedure you want in D2Extra's data section. Then call the procedure address using the same indirect near call method we have used in the previous examples. Push parameters on the stack as you might need, it all works the same way.

But...

There are two dangers you need to keep in mind. The first danger is version dependency. Up to now, everything went from Blizzard code to our code, and all calls from our code were through the D2Extra import table. If we are not calling an exported function and working through the import jump table, then the address we are calling must remain constant. And function addresses change between DLL versions! So at this point your D2Extra code becomes fixed to the version of Diablo II you are writing to, and you will need two versions of your module if you want to support both 1.09b and 1.09d. (We won't even begin to discuss future patches.)

The second danger is base relocations. Blizzard DLLs are built to move around if Windows requires it. It doesn't happen often, but it can happen. Our new DLL cannot move; it must always load at 6F700000 or calls inside Blizzard's DLLs will never find D2Extra. So how do we protect ourselves from base relocations? The first way is to write a separate procedure that can detect where in memory a DLL is loaded. This will use the Windows API function GetModuleHandle to obtain the address where the module actually loaded. You can retrieve your pointer from the data section and pass as a parameter to the relocation procedure, get the module's actual base address, compare the values between the actual base and the normal base, and if different alter the pointer and return it in a register. Then feed the returned value to the indirect near call using the register as a pointer. This is an advanced technique and beyond the scope of this tutorial, but it shields you from relocations. The reason I did not consider using this technique to allow D2Extra to be relocated is there would be quite a bit of code to add to each Blizzard DLL that would call on the new DLL.

So is there another way to shield ourselves from base relocations? Yes, thanks to Ollydbg there is an easier way. What you need to do is make Blizzard DLLs non-relocatable! Actually, the only DLLs we would have to worry about are ones where we enter from D2Extra without using imported functions. That would be D2Client, D2Game, and perhaps D2Common. The method involves editing the PE Header, which Ollydbg exposes for you quite handily. (For more information about the PE Header see Appendix A.) For this we want to be completely out of Diablo II, so shut down any running game.

Start Ollydbg, and open D2Client.dll through View | File. Right-click on the hex dump and pick Special | PE Header. Scroll down until you see "PE Signature" at offset F0. The structure starting there is how Windows knows the structure of the DLL and where to find important information. Keep going to offset 106, which shows DW 210E in the third column and "Characteristics = "{a whole bunch of stuff} at right. You want to edit the DW number from 210E to 210F. Then scroll down to offset 190. The two lines at 190 and 194 are location and size of the Relocation Table for this DLL. Change all eight bytes to zero. Save the file and open D2Game.dll. Repeat the process to view D2Game's PE Header. Only here, note the Characteristics offset is at offset FE and the Relocation Table entries are at 188 and 18C. But though the addresses have changed, the values are the same and the changes are the same. Save the file. If you are leaping into and out of D2Common, repeat the process with that DLL too.

Honey, We Left the Data Behind!

So far we have talked about using D2Extra for code, and transferring program execution back and forth between DLLs. But the Blizzard DLLs contain a wealth of data too. We need to gain access to that too. Data comes in two types, read-write data that can be changed, and read-only data that is constant. You could always copy read-only data and store it in D2Extra's data section. For large but constant structures such as the missile and skill tables, that might be the best answer. But what about DLL read/write data we may want to write changed values to?

Most instructions will cause an access violation because you are trying to take action with data from outside of the module you are executing code within. But you can move data back and forth. There is one and only one form of the MOV instruction which allows this transfer, using EAX as the transfer register. For example, you may want to use the read-only data at D2Game.6FD03B40 in EAX with the extra DLL. So you would execute MOV EAX,[6FD03B40] and then work with the data locally within your procedure. Now the reverse won't work here, because the source is read-only. But if you wanted to take that information, multiply it by 8, then store the result in read-write location D2Game.6FD2DE20, you would execute these instructions:

MOV EAX,[6FD03B40]
<--- "foreign" data address in brackets

SHL EAX,3

MOV [6FD2DE20],EAX
<--- "foreign" data address in brackets

Now the problem with this method is, you have to have a number in brackets as one of the operands. This is an Intel limitation; you cannot even put a value in EBX and execute MOV EAX,[EBX] without a crash. This isn't a problem, if you are working with a known location that doesn't change during the game. But if you want to access data locations that you don't know in advance, you have to write self-modifying code. That sounds ominous, but the application here is quite simple.

This is similar to the indirect near jump or call. But instead of a pointer for instructions, you manipulate a pointer to data. And because the self-modifying code must be in a writable section of the DLL, we will put two very small procedures at the top of the data section where they will be out of the way. So type in these instructions:

6F7F6FF0
MOV EAX,[6F7F6FE0]
<--- start with a dummy data location

6F7F6FF5
RETN

6F7F6FF6
INT3

6F7F6FF7
INT3

6F7F6FF8
MOV [6F7F6FE0]

<--- re-use the same dummy location

6F7F6FFD
RETN

6F7F6FFE
INT3

6F7F6FFF
INT3

The key feature of this trick is a changeable constant is now located at 6F7F6FF1 for moves from a Blizzard DLL to D2Extra, and another changeable constant is located at 6F7F6FF9 for moves from D2Extra to a Blizzard DLL. So in your code you need two instructions for each move, one to load the address to Blizzard data to the changeable constant, and a second instruction to call the modifiable procedure. The fact that we located these lines in a data section in no way prevents us from executing them!

Here is the same operation as we presented earlier in this topic:

MOV EBX,6FD03B40

<--- get pointer to data

MOV [6F7F6FF1],EBX
<--- modify access code

CALL 6F7F6FF0

<--- call access code

SHL EAX,3

MOV EBX,6FD2DE20

<--- get pointer to data

MOV [6F7F6FF9],EBX
<--- modify access code

CALL 6F7F6FF8

<--- call access code

Okay, that seems like a lot of running around to get the same result. The difference between the two versions is this: the first version has to be programmed from the start, but the second version allows you to change locations in execution. You could have a loop with EBX increased by four with each pass, and retrieve an array from another DLL by using the changeable constant as an index.

The Wrap-Up

Using the Extra DLL requires that you take a direct hand managing code execution much more closely than anything you will find in ordinary Windows programming...even Windows programming in assembly. You have to watch how you read or write data, because you are crossing boundaries the operating system was programmed to have. The transfer process will chew up clock cycles in your CPU too, so be sure to avoid many transfers inside of time-critical nested loops. If you want read-only data from one of the Blizzard DLLs, and you will refer to it often, it might pay to copy the data to the new module. Just remember you will have two places to update, should you change the data.

If you are interested in further information, here are some excellent sources.

1) IA-32 Intel Architecture Software Developer's Manual, three volume PDFs at http://developer.intel.com.

 Vol 1: Basic Architecture

 Vol 2: Instruction Set Reference <--- this is the most important one

 Vol 3: System Programming Guide

2) An In-Depth Look into the Win32 Portable Executable File Format, by Matt Pietrek, a two-part series originally published in MSDN Magazine, February and March 2002, available at http://msdn.microsoft.com. Mr. Pietrek also maintains a website at http://www.wheaty.net.

3) Microsoft Platform SDK documentation, from http://msdn.microsoft.com. The price is right --- free --- but you have to download the entire Platform SDK and install it to get the documentation. It is a little under 400MB, so look for the option that lets you download the 25MB modules. The documentation is also available online at http://msdn.microsoft.com, but I find the site is sluggish even with very high speed connections.

4) Iczelion's Win32 Assembly Homepage, http://spiff.tripnet.se/~iczelion/. A great source for assembly language tutorials, resources and links, if you are working in the Windows environment.

5) MASM32, http://www.movsd.com. This is a nifty wrapper for Microsoft Macro Assembler, and a reasonable development environment for assembly language. Not quite an IDE, but very close. And it is free also.

Updates and Errata

I have tested every example to verify it works, but I have Windows XP fully functional only. If you find an error, please send me e-mail or Private Message. Also, I recognize there are likely to be other valid methods than I have presented here. If you do find other methods, please send me a brief description and I will include them in the next revision.

Happy coding!

Myhrginoc

Appendix A - The Portable Executable (PE) Format

This is a highly condensed introduction. If you want to know the details, read the two-part article by Matt Pietrek cited in the bibliography. The primary reason for this Appendix is to give you enough information to find out where Blizzard code and data ends, and where you can squeeze in your own.

The PE Format has been in use since before Windows 95, and all Blizzard program files are PE files. You can find out a lot about their structure by viewing a block of data at the beginning of each file. Diablo II was compiled and linked for the Windows 98 specification, so all program sections are multiples of 4KB in size. The PE header occupies a slice of the very first section, which is neither code nor data in the ordinary sense. You can view the header in Ollydbg as described earlier, or you can download one of a number of utilities that expose the information in various formats. There is a PE viewer at Matt Pietrek's website, for example.

The header actually starts with a stub in MS-DOS. All Windows executables have stub code just in case you try to run it on an old machine or use it in a command window, and the message "This program cannot be run in DOS mode lives here. One very important location exists in the DOS stub, at offset 3C. The value stored in this location is the offset to the actual start of the PE header. The header can move around from file to file, and vary in size, so this location is the only place you know where to begin before looking into the individual file.

Once you find the PE header, you will see a block of information such as the one below from D2Net.dll. The header consists of three parts, the NT File Header (the first eight locations), the Optional header (everything from offset F8 to offset 1D4 below) and a number of section headers in the last part. The number of section headers is shown in the third entry of the NT File Header.

You will note this DLL has four sections labeled ".text", ".rdata", ".data", and ".reloc". These are default names for code, read-only data, initialized read/write data, and base relocation data. You will see ".rsrc" for resources if a module was compiled with resources (D2Extra is an example, the Version information is a resource).

000000E0 50 45 00 00

ASCII "PE"
; PE signature (PE)

000000E4 4C01

DW 014C

; Machine = IMAGE_FILE_MACHINE_I386

000000E6 0400

DW 0004

; NumberOfSections = 4

000000E8 D34E7C3B

DD 3B7C4ED3
; TimeDateStamp = 3B7C4ED3

000000EC 00000000

DD 00000000
; PointerToSymbolTable = 0

000000F0 00000000

DD 00000000
; NumberOfSymbols = 0

000000F4 E000

DW 00E0

; SizeOfOptionalHeader = E0 (224.)

000000F6 0E21

DW 210E

; Characteristics = DLL|EXECUTABLE_IMAGE|32BIT_MACHINE|LINE_NUMS_STRIPPED|LOCAL_SYMS_STRIPPED

000000F8 0B01

DW 010B

; MagicNumber = PE32

000000FA 06

DB 06

; MajorLinkerVersion = 6

000000FB 00

DB 00

; MinorLinkerVersion = 0

000000FC 00600000

DD 00006000
; SizeOfCode = 6000 (24576.)

00000100 00600000

DD 00006000
; SizeOfInitializedData = 6000 (24576.)

00000104 00000000

DD 00000000
; SizeOfUninitializedData = 0

00000108 CE2B0000

DD 00002BCE
; AddressOfEntryPoint = 2BCE

0000010C 00100000

DD 00001000
; BaseOfCode = 1000

00000110 00700000

DD 00007000
; BaseOfData = 7000

00000114 0000C06F

DD 6FC00000
; ImageBase = 6FC00000

00000118 00100000

DD 00001000
; SectionAlignment = 1000

0000011C 00100000

DD 00001000
; FileAlignment = 1000

00000120 0400

DW 0004

; MajorOSVersion = 4

00000122 0000

DW 0000

; MinorOSVersion = 0

00000124 0000

DW 0000

; MajorImageVersion = 0

00000126 0000

DW 0000

; MinorImageVersion = 0

00000128 0400

DW 0004

; MajorSubsystemVersion = 4

0000012A 0000

DW 0000

; MinorSubsystemVersion = 0

0000012C 00000000

DD 00000000
; Reserved

00000130 00D00000

DD 0000D000
; SizeOfImage = D000 (53248.)

00000134 00100000

DD 00001000
; SizeOfHeaders = 1000 (4096.)

00000138 00000000

DD 00000000
; CheckSum = 0

0000013C 0200

DW 0002

; Subsystem = IMAGE_SUBSYSTEM_WINDOWS_GUI

0000013E 0000

DW 0000

; DLLCharacteristics = 0

00000140 00001000

DD 00100000
; SizeOfStackReserve = 100000 (1048576.)

00000144 00100000

DD 00001000
; SizeOfStackCommit = 1000 (4096.)

00000148 00001000

DD 00100000
; SizeOfHeapReserve = 100000 (1048576.)

0000014C 00100000

DD 00001000
; SizeOfHeapCommit = 1000 (4096.)

00000150 00000000

DD 00000000
; LoaderFlags = 0

00000154 10000000

DD 00000010
; NumberOfRvaAndSizes = 10 (16.)

00000158 507D0000

DD 00007D50
; Export Table address = 7D50

0000015C C6000000

DD 000000C6
; Export Table size = C6 (198.)

00000160 18770000

DD 00007718
; Import Table address = 7718

00000164 64000000

DD 00000064
; Import Table size = 64 (100.)

00000168 00000000

DD 00000000
; Resource Table address = 0

0000016C 00000000

DD 00000000
; Resource Table size = 0

00000170 00000000

DD 00000000
; Exception Table address = 0

00000174 00000000

DD 00000000
; Exception Table size = 0

00000178 00000000

DD 00000000
; Certificate File pointer = 0

0000017C 00000000

DD 00000000
; Certificate Table size = 0

00000180 00C00000

DD 0000C000
; Relocation Table address = C000

00000184 20070000

DD 00000720
; Relocation Table size = 720 (1824.)

00000188 C0710000

DD 000071C0
; Debug Data address = 71C0

0000018C 1C000000

DD 0000001C
; Debug Data size = 1C (28.)

00000190 00000000

DD 00000000
; Architecture Data address = 0

00000194 00000000

DD 00000000
; Architecture Data size = 0

00000198 00000000

DD 00000000
; Global Ptr address = 0

0000019C 00000000

DD 00000000
; Must be 0

000001A0 00000000

DD 00000000
; TLS Table address = 0

000001A4 00000000

DD 00000000
; TLS Table size = 0

000001A8 00000000

DD 00000000
; Load Config Table address = 0

000001AC 00000000

DD 00000000
; Load Config Table size = 0

000001B0 00000000

DD 00000000
; Bound Import Table address = 0

000001B4 00000000

DD 00000000
; Bound Import Table size = 0

000001B8 00700000

DD 00007000
; Import Address Table address = 7000

000001BC B4010000

DD 000001B4
; Import Address Table size = 1B4 (436.)

000001C0 00000000

DD 00000000
; Delay Import Descriptor address = 0

000001C4 00000000

DD 00000000
; Delay Import Descriptor size = 0

000001C8 00000000

DD 00000000
; COM+ Runtime Header address = 0

000001CC 00000000

DD 00000000
; Import Address Table size = 0

000001D0 00000000

DD 00000000
; Reserved

000001D4 00000000

DD 00000000
; Reserved

000001D8 2E 74 65 78 74 00 00 00
ASCII ".text"
; SECTION

000001E0 F0550000

DD 000055F0
; VirtualSize = 55F0 (22000.)

000001E4 00100000

DD 00001000
; VirtualAddress = 1000

000001E8 00600000

DD 00006000
; SizeOfRawData = 6000 (24576.)

000001EC 00100000

DD 00001000
; PointerToRawData = 1000

000001F0 00000000

DD 00000000
; PointerToRelocations = 0

000001F4 00000000

DD 00000000
; PointerToLineNumbers = 0

000001F8 0000

DW 0000

; NumberOfRelocations = 0

000001FA 0000

DW 0000

; NumberOfLineNumbers = 0

000001FC 20000060

DD 60000020
; Characteristics = CODE|EXECUTE|READ

00000200 2E 72 64 61 74 61 00 00
ASCII ".rdata"
; SECTION

00000208 160E0000

DD 00000E16
; VirtualSize = E16 (3606.)

0000020C 00700000

DD 00007000
; VirtualAddress = 7000

00000210 00100000

DD 00001000
; SizeOfRawData = 1000 (4096.)

00000214 00700000

DD 00007000
; PointerToRawData = 7000

00000218 00000000

DD 00000000
; PointerToRelocations = 0

0000021C 00000000

DD 00000000
; PointerToLineNumbers = 0

00000220 0000

DW 0000

; NumberOfRelocations = 0

00000222 0000

DW 0000

; NumberOfLineNumbers = 0

00000224 40000040

DD 40000040
; Characteristics = INITIALIZED_DATA|READ

00000228 2E 64 61 74 61 00 00 00
ASCII ".data"
; SECTION

00000230 00390000

DD 00003900
; VirtualSize = 3900 (14592.)

00000234 00800000

DD 00008000
; VirtualAddress = 8000

00000238 00400000

DD 00004000
; SizeOfRawData = 4000 (16384.)

0000023C 00800000

DD 00008000
; PointerToRawData = 8000

00000240 00000000

DD 00000000
; PointerToRelocations = 0

00000244 00000000

DD 00000000
; PointerToLineNumbers = 0

00000248 0000

DW 0000

; NumberOfRelocations = 0

0000024A 0000

DW 0000

; NumberOfLineNumbers = 0

0000024C 400000C0

DD C0000040
; Characteristics = INITIALIZED_DATA|READ|WRITE

00000250 2E 72 65 6C 6F 63 00 00
ASCII ".reloc"
; SECTION

00000258 360E0000

DD 00000E36
; VirtualSize = E36 (3638.)

0000025C 00C00000

DD 0000C000
; VirtualAddress = C000

00000260 00100000

DD 00001000
; SizeOfRawData = 1000 (4096.)

00000264 00C00000

DD 0000C000
; PointerToRawData = C000

00000268 00000000

DD 00000000
; PointerToRelocations = 0

0000026C 00000000

DD 00000000
; PointerToLineNumbers = 0

00000270 0000

DW 0000

; NumberOfRelocations = 0

00000272 0000

DW 0000

; NumberOfLineNumbers = 0

00000274 40000042

DD 42000040
; Characteristics = INITIALIZED_DATA|DISCARDABLE|READ

Three things are of interest in this structure. First, the value ImageBase = 6FC00000 shows the preferred loading address for this DLL. If you were to make a call to the Windows API function GetModuleHandle, and compare the returned value in EAX to the ImageBase from the PE header, you would know if the module was relocated, what the displacement would be, and what every coded address would have to be adjusted by, in essence you could write your own relocations if you needed to.

Second, each section has slack space where compiled and linked code and data end, but before the next section begins. This space is available for our use. You identify the beginning of slack in any section by adding the VirtualSize to the VirtualAddress (RVA). In this example, the read-only data section starts at RVA 7000 and is E16 bytes in size, so the next available address is 7E16. You can put data in a code block, or code in a data block; these sections are a result of the compiler and have no absolute requirement for function. One section to stay clear of, however, is the .reloc section. This section contains the base relocations Windows will need, in case this DLL cannot be loaded at the preferred address. Not only does it have the relocation tables, the section itself is marked DISCARDABLE, and may disappear on you at some point.

The last item of interest is the Characteristics data at offset F6. In the tutorial we reviewed how to change a relocatable DLL into a fixed-address DLL by changing 210E in this location to 210F. The 16-bit location contains 16 one-bit flags (just like the flags register in the CPU), each one having a separate meaning. The least significant bit of this word is the flag for whether a module is relocatable or not.

Many things in the PE header cannot be changed. But it is safe to change a module's relocation status, and you can also change the VirtualSize of a section. If you added eighty bytes of code to the .text section of D2Net, you might want to change the .text VirtualSize from 55F0 to 5640 so you know where the next available space begins. Or you may want to leave the VirtualSize alone so you know where Blizzard information stops.

Appendix B - Loading D2Extra

The D2Extra plugin kit comes with two versions of D2Client.dll, one for v1.09b and one for v1.09d. But you might already have a modded D2Client and want to keep your changes intact. Below is the loader code you can install yourself. The code is presented in offset addressing, so add 6FAA0000 to all offsets with leading zeros for absolute addressing. (If you use Ollydbg, this format allows you to open D2Client.dll with View | File while not running a game, then Assemble this code directly into the specified offsets.)

These are the edits for version 1.09b, starting with the code section:

00002175 E9 E6 91 0C 00
JMP 000CB360

(jump to D2Extra.dll loader)
000CB359 CC

INT3

(spacer block)
000CB35A CC

INT3

000CB35B CC

INT3

000CB35C CC

INT3

000CB35D CC

INT3

000CB35E CC

INT3

000CB35F CC

INT3

000CB360 83 C4 08 ADD ESP,8

000CB363 68 AA 4B B7 6F PUSH 6FB74BAA

000CB368 FF 15 04 D0 B6 6F CALL [6FB6D004]

(Kernel32.LoadLibraryA)

000CB36E 85 C0 TEST EAX,EAX

000CB370 74 07 JE 000CB379

000CB372 33 C0 XOR EAX,EAX

000CB374 E9 01 6E F3 FF JMP 0000217A

(returns you to Blizzard code)
000CB379 6A 01 PUSH 1

000CB37B 68 B6 4B B7 6F PUSH 6FB74BB6

000CB380 68 E1 4B B7 6F PUSH 6FB74BE1

000CB385 E8 8C 55 FF FF CALL 000C0916

(Fog.10023)
000CB38A 6A FF PUSH -1

000CB38C E8 12 5C FF FF CALL 000C0FA3

(D2 exit sequence)
000CB391 C3 RETN

000CB392 to
000CB39F CC INT3

(spacer block)
and in the middle of the .rdata section put in these null-terminated (00 byte, which are denoted by <null>) strings:

000D4BAA
d2extra.dll<null>

000D4BB6
C:\Myhrginoc\Diablo II\D2Extra\D2Extra.dll<null>

000D4BE1
Load failed at 6F700000. Shut down unnecessary programs.<null>
The first string is used by the LoadLibraryA call and must not be changed. The others appear in an assertion error that gets displayed and logged to your d2 debug text files. (Note: if you prefer a different error message, you will have to revise the last string pointer.)

Now for the 1.09d edits:

00002175 E9 E6 91 0C 00
JMP 000CA6E0

(jump to D2Extra.dll loader)
000CA6D9 CC

INT3

(spacer block)
000CA6DA CC

INT3

000CA6DB CC

INT3

000CA6DC CC

INT3

000CA6DD CC

INT3

000CA6DE CC

INT3

000CA6DF CC

INT3

000CA6E0 83 C4 08
ADD ESP,8

000CA6E3 68 AA 3B B7 6F
PUSH 6FB73BAA

000CA6E8 FF 15 04 C0 B6 6F
CALL [6FB6C004]

(Kernel32.LoadLibraryA)
000CA6EE 85 C0

TEST EAX,EAX

000CA6F0 74 07

JE 000CA6F9

000CA6F2 33 C0

XOR EAX,EAX

000CA6F4 E9 81 7A F3 FF JMP 0000217A

(returns you to Blizzard code)
000CA6F9 6A 01

PUSH 1

000CA6FB 68 B6 3B B7 6F
PUSH 6FB73BB6

000CA700 68 E1 3B B7 6F
PUSH 6FB73BE1

000CA705 E8 8C 55 FF FF
CALL 000BFC96

(Fog.10023)
000CA70A 6A FF

PUSH -1

000CA70C E8 12 5C FF FF
CALL 000C0323

(D2 exit sequence)
000CA711 C3

RETN

000CA712 to
000CA71F CC INT3

(spacer block)
and the strings will go to:

000D3BAA
d2extra.dll<null>

000D3BB6
C:\Myhrginoc\Diablo II\D2Extra\D2Extra.dll<null>

000D3BE1
Load failed at 6F700000. Shut down unnecessary programs.<null>
END TUTORIAL

Version 1.01 — 8/24/2002

Page 15 of 15

