DIABLO II MODMAKING – THE PHROZENKEEP

ADVANCED CODE EDITING TUTORIAL

-

RUNNING A CUSTOM DLL – CHAPTER ONE

Written by Joel FALCOU
Based on the Sir_General’s work.

THANKS :
Special Thanks to Sir_General who bring us all the stuff needed to make this kind of
tutorials. Keep up the good work man, you rock!

Thanks to all the Code Editing Forum buddies for their constant help and all the
ideas they give to me.

Thanks to Paul Siramy for proofreading and bug Slaying!

INTRODUCTION

This is the first opus of a continuing series of advanced code editing tutorial.

This tutorial is based on the technique made by Sir_General which use a hand-made

DLL, designed in C++, to add features to Diablo II that are impossible to add trough

simple DLL edition or txt edition.

My goal is not to make an extensive course on DLL mechanics, C++ programming or Object oriented programming. I assume that the reader has the required knowledge to run a C++ compiler, use a debugger and hex-edit Diablo II DLL. If any of this point is obscure for you, just take yourself by the hand, grab a book or two and start learning (. However, I’m not a sadistic man and any question related to these subjects could be addressed to me.

For all the gore details about getting the DLL to run is already explained in the Sir_General tutorial entitled “Open-Source Mod with tutorial” which can be downloaded here.

All his explanations are valid here, except for the details of the implementation.

Especially, you will need his modified D2Win.dll. For convenience, this DLL and a custom VBS script for running the example are packed with this tutorial.

Hoping, everything will be nice and clear, let’s start!

In This Tutorial …

Introduction

1. Tools of the Trade.

2. The external DLL.

3. Features 1: Creating new usable items.

4. Example 1: Recreating the classic Diablo Elixir.

5. Some more ideas …

1. Tools of the Trade.

First, we’ll browse our resources center for some tools we’ll need.

Obviously, as we’re going to compile some C++, a C++ compiler is needed.

Personally, I use my working install of Visual C++ 6.0. BUT, it’ll cost you a bit of
money if you buy it. However, there is a free evaluation version that could work for this. Some others compiler may be worth the shot, like the Dev-C++ one or any other free C++ compiler that supports DLL creations and use the classic Win32 Dynamic Library. Try http://www.bloodshed.net/compilers/index.html to get some more information about free C++ compilers. Note that the current DLL tutorial has only been tested with VC6 and Borland C++ Builder 5.5. I’ll greatly appreciated any feedback of successfully compilation on any other compiler.

We’ll also need a disassembler/debugger. The reference is OllyDbg. It’s a shareware and is really worth the money you can invest it. The evaluation version is fully functional but I strongly recommend registering it.

Must I say you also need a running copy of Diablo II – Lord of Destruction v1.09 B?

2. The external DLL:

For this, I strongly recommend to read the Sir_General ’s tutorial. It clearly states the entire trick involved into getting a new DLL to be loaded by Diablo II.

Here I’ll go on some crucial details that will clear some points.

2.2 The D2DLL wrapper:

The big difference between my DLL and the Sir_General one is the way I handle the DLL instance. Instead of using a bunch of global variable, I’ve built a few numbers of classes that keep care of all the Win32 DLL calling convention and initialization.

2.2.1 The D2DLL class:

This class is a wrapper that encapsulates the DLL initialization, clean up and provide a way to access the Diablo II exported functions. It’s used by the DLLMain function to load up our DLL, set up the modification to the other Diablo II DLL and launch the Error Logger.

2.2.2 The ErrorLogger class:

This class provide a bunch of static method that are used to report error to a log file, display info in this file and, more generally, debug your code easily. These functions look like the various printf standard function and are relatively versatile. On the long run, I will add exception-handling facility to it and provide a way to directly use the Fog assertion system and so display your own Error message box.

These two classes are the core system of the external DLL and are used and initialized once in the DLLMain function.Then if you need to use them, a simple static method call will be needed.

2.3 The Diablo II Structures:

Again another difference with the Sir_General code, I’ve packed a number of C structures that reproduce the schemas of the various Diablo II data structure. They’re all accessible by including the D2Structs.hpp header. However, for maintenance and readability, they’ve been separated into various smaller headers. Each of them contains only a few structures grouped by themes.

For example, if you need to look at the internal definition of the UnitAny structure, which is the basic definition for all Diablo II components (monsters, missiles, players etc), just take a look at the D2Unit.hpp file.

3. Features 1 - Creating New Useable Items:

Well, I don’t know if you remember the good ol’days of Diablo and Hellfire but one

of the coolest features of these games were the various Elixirs you can found or buy. By right-clicking them, your hero was able to gain one point in one of his/her stat. In Diablo II, Blizzard once thought of adding such items but their implementation is buggy. There is solution to make them work but well, if you stop there, this paper will be useless (. So, as a first lesson, we’ll see how to create new useable items and as an exercise, you’ll recreate the old and mighty Diablo Elixirs.

The tutorial will contain three parts. The first one will explain how Diablo II currently manages useable items. The second will explain the algorithm we’ll use to add our own useable items. And the third one will present the way we’ll hijack the Diablo II DLL to use our newly created functions. After this tutorial, you’ll find an exercise that will guide you trough the process of adding Diablo Elixir in your mod and make them running and dropping.

If at any moment you feel lost, don’t worry. This kind of modification is a bit hard to grasp on the first shot. But let’s work a few, take a break and read it again, things will become clearer. In any case, feel free to mail me on the forums (better, leave a post in this topics) and I’ll try to solve your problem.

OK? So take a good seat, a bunch of Alka-Seltzer and let’s go!

3.1 Current Diablo II useable items system.

Whenever you click on a useable item in Diablo II (a healing pot, a identify scroll, a TP book, the Cube, etc), the game calls an almighty function that will deal with all the case that could arise. This function is located at 6FCE2ED0 in Diablo II 1.09b. After checking for a few constraints, the function start a huge switch statement – somewhat optimized – to see what kind of items you’ve clicked. What does the game do? After matching the current item ID with the one passes as argument, Diablo II decides what to do with it. For the various potions, it calls another functions where the exact type of the potions is determined. It calls special code for the various quest item or others props like the Tome etc …

Pretty straightforward isn’t it? When it’s done, this function return a Boolean value that will say the game if the items is destroyed after use. For the potions and the like, this value is 1, for the tome or the cube it’s 0. Note also that this functions also handles some post-effect of the items. If you use an ID scroll on an item, the function will be activated (a first time) when you click the scroll and (another time) when you click the unidentified item. From there, it will call a new function, located at 6FCE2770 in D2Game.dll.

This function is specialized in the processing of the item identification. Take a look at it if you want, it’s very informative and will be the subject of one of our exercises later on.

3.2 New useable Items Insertion:

Now we know where to modify our lovely DLL (. What will we do next?

Easy! We’ll set a few jumps to an empty code location that will call our DLL. Then, once we’re in, we’ll test the kind of item we have and call the proper function.

What will you need in this function? Obviously, we’ll need a pointer to the current player and to the current item. We also need the ID of the item we’re using.

Is that all? NO!!! We also badly need the state of the variable that tell us if the item have to be destroyed. Why? Because our functions will be called for every item. So, for those that don’t require a special process, we’ll exit right after we entered our functions. For coherence purpose, we’ll just return the old value of this variable to the main function and go on.

So, our function will surely have a prototype that look like:

int STDCALL UseItem(int destroyState, UnitAny* ptItem, DWORD itemID, UnitAny* ptChar);

In this function, we’ll test the item ID and if this ID is one of our items, we’ll apply some change to the player or the item. How to get an item ID? It’s easy. Consider the files armor.txt, weapons.txt and misc.txt. You have something like that:

In weapons.txt:

Hand Axe - Item #0
Axe - Item #1
...
Matriarchal Javelin - Item #305

In armor.txt:
Cap - Item #306
Skull Cap - Item # 307
...
Blood lord Skull - Item #507

In misc.txt:
Elixir - Item #508
...
My New Potion - Item #647
Well, currently the ‘My New Potion Item’ doesn’t exist but we’ll add one!
So with this information at hand, we could write a simple useable item function.

int STDCALL UseItem(int destroyState, UnitAny* ptItem, DWORD itemID, UnitAny* ptChar)

{

 int destroy = destroyState;

 switch(itemID)

 {

 case 647 : // Add your code here.
 destroy = 0;
 break;

 default: break;

 }

 return destroy;
}

3.3 DLL Modifications:

So, we know how to make new useable items now. That was easy. But we still have to tell Diablo II to use our bit of code in order to benefit of our newly created bozo!

As we see just before, the function that deals with the useable item in settled in D2Game.dll at the address 6FCE2ED0. We’ll modify it to call our function.
For calling an external function from a Diablo II DLL, I use the same technique as Sir_General. Take a look at the D2DLL::__setFunctionsPointers() method.

void D2DLL::__setFunctionsPointers()

{

 // Well, it looks ugly for a professional developer

 // but here we're doing something that work, not

 // something pretty ^_^ !

 // Set up the call address for OnUseItem.
 ((int)0x6FCFF80E) = (int)&UseItem;

}

The trick is easy to grab, we just write our function address somewhere in the D2Game.dll file.

What have we modified in D2Game.dll?

At the very end of the function, we add a jump to an empty code space where we call UseItem via its address. The code looks like that:

 6FCE3073 33C0 XOR EAX,EAX

 6FCE3075 E9 90000000 JMP D2Game.6FCE310A

 6FCE307A 90 NOP

 6FCE307B 90 NOP

 6FCE307C 90 NOP

 6FCE310A E9 F0C60100 JMP D2Game.6FCFF7FF

 6FCE310F 5F POP EDI

 6FCE3110 5E POP ESI

 6FCE3111 5D POP EBP

 6FCE3112 5B POP EBX

 6FCE3113 59 POP ECX

 6FCE3114 C2 1000 RETN 10

D2Game.6FCFF7FF is the empty code section we spoke earlier. There we write something like :

 6FCFF7FF 55 PUSH EBP

 6FCFF800 51 PUSH ECX

 6FCFF801 57 PUSH EDI

 6FCFF802 50 PUSH EAX

 6FCFF803 FF15 0EF8CF6F CALL DWORD PTR DS:[6FCFF80E]

 6FCFF809 E9 0139FEFF JMP D2Game.6FCE310F

 6FCFF80E DEADBEEF DD DEADBEEF

Nothing spicy, we push some needed parameters and call our function, and then we return back from where we came from. The ‘DEADBEEF’ value is just a style I use to specify non-initialized address value in the DLL. Any other meaningless value is good (
After this little hex-edition, grab your txt editor and add a new item at the very bottom of a clean misc.txt. Set usable to 1 and it should rock. Make Akara sells it for testing purpose and get in town to test it ;)

All is done. Well at least the theory, now comes the exercises :grin:

 4. Exercises:

Now you got the theory well settled in your mind, you’re ready to make some exercises.

Take a paper and think about the following (solutions are given in the code that is packed with this tutorial). Hints are given just after the exercise to help you in the non-trivial part of the exercises.

1. (() Recreate four potions that act as the Diablo Elixir, giving you a point of Strength, Energy, Vitality or Dexterity when quaffed.

2. ((() Create an item called ‘Treasure Chest’ that gives you a random amount of gold when used. Beware of the gold limit!

Two more exercises for people who want to get it further. No hints for these, but a little
research on our forums will surely give you the needed information.

3. ((((() Create an item that looks like a book and give a +1 to a specific skill.
You’ll surely have to test for the correct class, the level of the player and the maximum
skill point limit. If you feel so, try to recreate the entire Diablo/Hellfire Book of skills system.

4. (((((() Remove the old potions from the game and replace them by your own.
just choose an healing system (fixed amount, percentage, etc) and create the needed item and functions. As a bonus, make the potion leave a little empty vial after being quaffed. Note that when you’re adding hp or mp via this potions, you have to test for the maximum HP limit.

HINTS:

You could access player stat by using the D2Common.#10519 function, add stat with D2Common.#10518 and get a random value with D2Common.#10918.

These functions are already available via the static method D2DLL::getFunctions(). Look at the D2DLL constructor to get the proper function name to access these goodies. Note that the various STATS_??? constants are defined into an enumeration that lies in the file D2Constants.hpp.

mFunctionsList->D2AddPlayerStat = (D2Common10518)0x6FDA7D70;

mFunctionsList->D2GetPlayerStat = (D2Common10519)0x6FDA7E40;

mFunctionsList->D2GetRandomInt = (D2Common10918)0x6FDA0B10;

// Example : adding a random amount of STR (between 0 and 9)
// ptChar hold a UnitAny* to the current player

DWORD v = (D2DLL::getFunctions())->D2GetRandomInt(&(ptChar->nSeed),10);
(D2DLL::getFunctions())->D2AddPlayerStat(ptChar, STATS_STRENGTH, v);

5. Other Ideas …

This tutorial is in fact incomplete. I will update it as regularly as possible by giving you more and more techniques or tricks to craft your own external DLL. Keep in touch, the second opus of this series will surely come out soon (
