Diablo II v1.09b Code Editing Tutorial

v1.00

Introduction

Binary/Decimal/Hexadecimal

Hex Editing with XVI32

Basic Assembly

The OllyDbg Assembler/Dissassembler

The OllyDbg Debugger

Conclusion

Credits

Introduction
Welcome to the Diablo II code-editing tutorial. This tutorial will, hopefully, introduce you to the basics of code-editing a DLL for any game, and more specifically, for Diablo II. I don’t think I’d call the tutorial complete right now because there is a whole lot more I’d like to add. But who knows when I’ll get around to it.

This tutorial uses a few pieces of software to perform the tasks, but fear not because all of this software, except for Diablo II, is free of charge. To complete everything in this tutorial, obtain all of the following from the listed website:

Diablo II v1.09b
Make sure you have v1.09b. Everything in this tutorial is for v1.09b. If you have a later version, you’ll have to uninstall and reinstall Diablo II and then patch to v1.09b. You can get the v1.09b patch at http://www.fileplanet.com/index.asp?scope=-560§ion=560&page=2&file=80283&download=1.

XVI32 Hex Editor

This is the freeware hex editor of choice. It has a fairly easy to use interface and the price is right. You can get this at http://www.chmaas.handshake.de/delphi/freeware/xvi32/xvi32.htm.

OllyDbg

OllyDbg is a freeware hex editor, dissassembler, assembler, and debugging tool. It has a number of very advanced features and a very user-friendly interface. All free of charge. This one can be obtained from http://home.t-online.de/home/Ollydbg/.

Windows Calculator

While many programs have ways to convert between decimal and hexadecimal, I haven’t found any that can do addition or subtraction in hexadecimal except for the standard Windows Calculator. You should already have this.

There are a number of different ways to modify a program. This tutorial looks specifically at hex editing and disassembling the DLLs of Diablo II. It starts with the assumption that you know nothing about hex editing, hexadecimal, ASM, or the Diablo II DLLs. It will, therefore, cover all of those topics, starting with hexadecimal.

Binary/Decimal/Hexadecimal
In computers, everything is in binary. Even the words you are reading are a series of 0s and 1s. However, this would be very inconvenient for editing purposes because it takes a lot of space to display all those 0s and 1s. This is why the 0s and 1s are commonly grouped into sets of eight. You’ll never find anything that deals with a single 0 or 1 (which is called a bit). It will always been a group of 8 (a BYTE), a group of 16 (a WORD), or a group of 32 (a DWORD). We’ll look at the differences between those later. For now, it’s important to learn how to read a byte.

Numbers are represented using the groups of bits we mentioned about. They are represented in this fashion:

0000 0000 Binary

000 Decimal

00 Hexadecimal

0000 0001 Binary

001 Decimal

01 Hexadecimal

0000 0010 Binary

002 Decimal

02 Hexadecimal

0000 0011 Binary

003 Decimal

03 Hexadecimal

0000 0100 Binary

004 Decimal

04 Hexadecimal

0000 0101 Binary

005 Decimal

05 Hexadecimal

0000 0110 Binary

006 Decimal

06 Hexadecimal

0000 0111 Binary

007 Decimal

07 Hexadecimal

0000 1000 Binary

008 Decimal

08 Hexadecimal

0000 1001 Binary

009 Decimal

09 Hexadecimal

0000 1010 Binary

010 Decimal

0A Hexadecimal

0000 1011 Binary

011 Decimal

0B Hexadecimal

0000 1100 Binary

012 Decimal

0C Hexadecimal

0000 1101 Binary

013 Decimal

0D Hexadecimal

0000 1110 Binary

014 Decimal

0E Hexadecimal

0000 1111 Binary

015 Decimal

0F Hexadecimal

0001 0000 Binary

016 Decimal

10 Hexadecimal

And this continues until you reach:

1111 1111 Binary

255 Decimal

FF Hexadecimal

Notice the following in each. Binary only uses 0s and 1s, like I said before. Decimal is what you are familiar with and know how to read. Hexadecimal is like decimal until you reach 10, and then it starts using the letters A through F. You won’t usually have to convert between binary and decimal when you are code editing, but I’ll cover it anyway because you never know.

To convert from binary to decimal, you need to follow these steps:

You need to write a total somewhere. The total starts at 0. Look at the right most number. If it is 0, go to the next number. If it is 1, then you need to add 2N to the total. N will depend on what part of the binary number you are on. For the right most number, N is 0. For the one next to it, N is 1. For the one next to that one, N is 2. After that, N becomes 3. Then N becomes 4. And so on until you’ve gone through all of the numbers in the binary number. For reference, here is 2 raised to the most common powers.

20 = 1

21 = 2

22 = 4

23 = 8

24 = 16

25 = 32

26 = 64

27 = 128

Now lets do an example. Convert 0010 1001 to decimal.

We start by writing down our total. TOTAL = 0.

And write down what N is. N = 0.

0010 1001
Look at the right most number of the binary number. It’s a 1, so we add 2N to our total. Right now, N is 0, so we add 20, which is 1. So now TOTAL = 1.

Move to the next number, and don’t forget that N increases. N = 1.

0010 1001

This is a 0, so we skip it.

Move to the next number and increase N. N = 2.

0010 1001

This is another 0, so we skip it.

Now N = 3.

0010 1001

Now we have another 1, so we add 23 to the total. 23 = 8, so now the TOTAL = 9.

After this, N = 4.

0010 1001

We have a 0, so we skip it.

Now N = 5.

0010 1001

This is a 1, so we add 25 to the total. 25 = 32, so now the TOTAL = 41. As you can see, the other two numbers after this are 0, so we can stop here.

The result:
0010 1001 Binary

41 Decimal

If you didn’t catch any of that, there’s an easier method to converting. It’s called the Windows Calculator. Here’s how to do it:

Start by making sure you are in scientific mode:

[image: image1.png] [image: image2.png]
[image: image3.png]
Now choose the Bin(ary) option and enter your binary value:

[image: image4.png]
Now switch back to Dec(imal) and the binary value will change as well:

[image: image5.png]
In the event that you need to convert from binary to hexadecimal, you can just choose the Hex(adecimal) option instead of the Dec(imal) option. If you have to do it by hand, convert to decimal first then convert from decimal to hexadecimal, which is what we’re covering next.

Before you can convert from decimal to hexadecimal, you need to know what all those letters in hexadecimal mean. Here’s the conversion:

00 Decimal

0 Hexadecimal

01 Decimal

1 Hexadecimal

02 Decimal

2 Hexadecimal

03 Decimal

3 Hexadecimal

04 Decimal

4 Hexadecimal

05 Decimal

5 Hexadecimal

06 Decimal

6 Hexadecimal

07 Decimal

7 Hexadecimal

08 Decimal

8 Hexadecimal

09 Decimal

9 Hexadecimal

10 Decimal

A Hexadecimal

11 Decimal

B Hexadecimal

12 Decimal

C Hexadecimal

13 Decimal

D Hexadecimal

14 Decimal

E Hexadecimal

15 Decimal

F Hexadecimal

Now that you know what the letters mean, let’s look at the general idea behind a conversion. You take your decimal number and divide it by 16. Make sure you know what the remainder is. Once you do this, you take the remainder and write that down. Remember that if the remember is between 10 and 15 that you use the letters A through F. Now you take what is left and divide that by 16. Get the remainder for that and write that down. Continue to do this until you have nothing left to divide. Let’s look at an example.

Convert 217 to hexadecimal.

We start by dividing 217 by 16. This gives us 13 R(emainder) 9. So we write the 9 down.

Now divide 13 by 16. This gives us 0 R 13. Now we write down D. This gives us D9. Remember to use the letters from above.

Since we have 0 left, we’re finished. The result:

217 Decimal

D9 Hexadecimal

If you didn’t catch that, you can use the calculator. I won’t go through it again. The only difference is that instead of switching between Bin(ary) and Dec(imal) you switch between Hex(adecimal) and Dec(imal).

It’s also important to learn how to convert from hexadecimal to decimal because you’ll be doing it a lot. This is a lot like converting from binary to decimal. You start with the right most number and multiply it by 16N. You add this to your total. Then you move on to the next number and multiply it. Just like in binary, N starts at 0 and increase every number. So the first number is 0, the second is 1, the third is 2, the fourth is 3, and so on. Also, if you have one of the letters instead of a number, just use its decimal equivalent. So if you come across an A, you multiply 16N by 10. Let’s look at an example.

Convert 3F to decimal.

We start with TOTAL = 0 and N = 0.

Our first number is F, or 15. Multiply this by 160, which is 1. So now TOTAL = 15.

Increase N, so N = 1.

Our next number is 3, so we multiply 161, which is 16, times 3. That’s 48, so we add 48 to the TOTAL. Now TOTAL = 63.

That’s the last number, so the result is:

3F Hexadecimal
63 Decimal

Once again, the calculator can be used instead of doing it yourself.

Hex Editing with XVI32
Let’s start by getting a look at the XVI32 interface:

[image: image6.png]
The hexadecimal display of the file contains the file’s contents byte by byte in a hexadecimal value. The ASCII display of the file is used to help identify strings within the file. A string is basically just a word or a sentence or some other readable thing. You’ll notice that the red line is pointing to “This program cannot be run in DOS mode.” This is a string. We never would’ve noticed it without the ASCII display, either.

[image: image7.png]
The current address tells you where you are in the file. You’ll often hear people talk about offsets or addresses. These indicate the location in the file of the data. As you can see, it starts at 0 and it is displayed in hexadecimal. Don’t worry about having to convert between hexadecimal and decimal to find offsets/addresses. Almost every offset/address you see will be in hexadecimal. Beside that is the decimal value of the current byte you have selected. We have 4D selected, and its decimal value is 77. Pretty handy, no? Finally, you have insert/overwrite mode. In insert mode, the data you put in is added and all the rest of the data comes after it. This increases the location of every byte after it by 1. You should NEVER use insert mode. Make sure it says overwrite. In overwrite mode, the data is replaced, not inserted. You can change modes by pressing the “Insert” button on your keyboard or in the “Tools” menu.

[image: image8.png]
This final screen is the GOTO screen. You access this by going to the “Address” menu and selecting “Goto…”. In this, you insert the address/offset you want to goto and push OK. The editor will automatically go there so you don’t have to search for it.

Now that we’ve seen the basic layout of the XVI32 Hex Editor, let’s look at an example. We’re going to “fix” the Barbarian/Assassin always critical hit bug. Start by opening up D2Game.dll. Now use the “Goto…” menu choice and go to offset 805FD. You should see the following series of hexadecimal numbers:

BA 64 00 00 00 8D 4E 2C E8 F6 41 04 00 83 F8 64

Make sure you’re in overwrite mode, this is very important. Now overwrite these bytes and change them to:

6A 6F 5A 8D 4E 2C 50 E8 F7 41 04 00 5A 3B C2 90

You’ve just edited the Diablo II code to make it so the Barbarian and Assassin won’t always critical hit. It’s as simple as that.

You’ll find that in most cases, people will post ASM changes along with simple hex editing changes. So if you know how to do this, you can do a lot.

Basic Assembly

Assembly is a very complicated thing, and there is no way this tutorial can cover it all. I will, however, go into some of the basic, but important, concepts you’ll need to know to get started. This includes registers, the stack, important commands, and a few other things.

Let me start by making a quick note that ALL ASSEMBLY VALUES ARE IN HEXADECIMAL. So I hope you were paying attention when you went through the hex sections above. That said, it’s on to registers.

While there are a number of registers in assembly, we’re just going to concentrate on the 32-bit registers. First, let’s explain what a register is. For our purpose, a register is 32 bits that holds a number. That’s all it does. We use registers because a processor can only deal with so many numbers at a time. You can imagine how many numbers Diablo II has in memory. Well, registers are basically the numbers that we’re using at the moment.

Each register has a purpose, supposedly, but you’ll find that some can be used for mostly anything while others should never be touched by you unless you know exactly what you’re doing. Here are the registers you should know:

EAX – Accumulator – The register is useful for just about anything you want. EAX is sometimes used as the return value of functions.

EBX – Base – This is another register that can be used for just about anything.

ECX – Counter – You can use the counter register for anything. Just know that it is automatically used by the REP and LOOP instructions.

EDX – Data – Another all-purpose register.

ESI – Source Index – This register can be used for plenty of things, but it is commonly used with data structures.

EDI – Destination Index – This is like ESI. It can be used for most anything, but is usually used with data structures.

EBP – Base Pointer – This register has lots of purposes, as well. It’s commonly used as a pointer to the stack.

ESP – Stack Pointer – This register is almost explicitly used as the stack pointer. Unless you know exactly what you’re doing, don’t touch this or you run the risk of corrupting the stack.

EIP – Instruction Pointer – This register points to the current instruction to execute. You can’t mess with it directly, and you never should. This will be properly changed with CALL, JMP, and RETN statements.

The registers you’ll be using most are the EAX, EBX, ECX, and EDX registers.

Now let’s take a look at the stack. Each program has a stack, and this is one of the most important parts to the program. Few things can come as close. A stack is often referred to as a “last in, first out” system. What this means is that the last item put on the stack is the first item to come off the stack. To prove this, look at the below example of books:

[image: image9.png]
The important thing to learn here is that in a stack, the first item on is the last item off.

Before we continue on, it’s a good idea to understand just how important the stack is. Let’s say that you were performing a task with the books above and you expected everything to go just in the order that it does above. What would happen, however, if the red book weren’t put on? When you went to pick up the red book, you’d get the yellow. When you went to pick up the yellow, you’d get the green. And when you went to pick up the green, you’d get the blue. But what happens when you get to picking up the blue? Well if this is a program, chances are you crashed way back when you picked up the yellow instead of the red. And if not then, one of the other times. If you did manage to make it through, well then you crash now. In any case, you crash, which is bad. So make sure you don’t mess up the stack by either forgetting to put something on or taking something off you shouldn’t or even putting things on in the wrong order. It doesn’t take a lot to crash a program if you corrupt the stack. This is also the reason why you shouldn’t mess with ESP (Stack Pointer) unless you know what you’re doing. With that out of the way, we can begin to look at some basically assembly instructions, starting with two that work with the stack, PUSH and POP.

Now that we’ve seen the registers and the stack, we need to learn how the two work together. If you haven’t noticed, we only have about 7 registers that we can use as much as we want. So what happens we need to temporarily used a register for something else and then get its value back? Well, we use the stack. We put it on the stack and then take it off again. To put something on the stack, we use the PUSH instruction. When we do this, we say we are pushing something onto the stack. The PUSH instruction looks like this:

PUSH EAX

PUSH EBX

PUSH ECX

PUSH EDX

The following segment of assembly will put the values in EAX, then EBX, then ECX, and then EDX onto the stack. We can also push things beside the registers. We can do numbers as well.

PUSH 5

PUSH FF

PUSH 1F

That segment of assembly will put the value 5, then 255, then 31 onto the stack. When you do a PUSH instruction, whether it is on a register, a number, or something else, all you are putting onto the stack is a number. And just because you used the PUSH EAX instruction this doesn’t mean that when you take this off the stack you have to take it off and put it in EAX again. It can be put in another register as well.

Once you’ve put things onto the stack, you have to know how to take them off. You do this with the POP instruction. This is usually called popping something off the stack. This works almost exactly like PUSH. The instruction looks like this:

POP EAX

POP EBX

POP ECX

POP EDX

Pretty similar, no? This segment will take the top value on the stack and put it in EAX. Then it takes the next value and puts that in EBX. Then the next one goes into ECX and the next one goes into EDX. Unlike PUSH, though, you CAN’T do something like:

POP 5

This doesn’t work. You can POP to a location in memory, although you won’t see this very often (at least not in Diablo II from what I’ve seen).

Now let’s look at moving values between registers and putting values in them. Let’s say we wanted to move the value in EDX to EAX. We could do the following:

PUSH EDX

POP EAX

This would put the value in EDX onto the stack and then remove it and put it in EAX. There’s another way to do this, though. This is with the MOV instruction. MOV stands for move (big surprise) and is used to move values between registers and locations in memory. Instead using the above instructions, we can use this:

MOV EAX, EDX

This reads as “move EDX into EAX”. In a MOV instruction there are always two things separated by a comma. In this case they are EAX and EDX. The first thing is the destination, or the thing we want the value to be placed into. The second thing is the source, or the value we want placed in the first thing. We can also use MOV to move numbers into a register:

MOV EAX, 30

This moves the value 48 into EAX. We can’t do the opposite, though, and say:

MOV 30, EAX

That doesn’t work. We can also use move with locations in memory. Now lets look at a few mathematical instructions.

Let’s look first at the ADD instruction. This is pretty self exclamatory. This adds a value to the given register. For example:

ADD EAX, 1

This adds 1 to EAX. We can also say something like:

ADD EAX, EDX

This adds the value of EDX to EAX. Not so difficult to understand, now is it.

If there’s an ADD instruction, then it follows that there should be one for subtraction. This is called the SUB instruction, and works just like the ADD instruction:

SUB EAX, 1

SUB EAX, EDX

Nothing surprising there.

Following along the with the ADD instructions is the INC instruction. This increases the value of the given register by one. This is simply:

INC EAX

The above statement is the same as saying:

ADD EAX, 1

Only its smaller and stuff. You’ll see this a lot, so remember it.

And if there’s an INC instruction, there is obviously one to decrease the value of a register by one. This one is called the DEC instruction. It works just the same:

DEC EAX

Which is like saying:

SUB EAX, 1

Not very difficult to understand. These are most of the important math functions, so let’s look at the some logic functions.

The first we’ll look at is the AND instruction. ANDing is a boolean operation that is extremely common in computers. It is one of the most basic and most important operations that can be performed. Here’s what an AND instruction looks like:

AND EAX, EDX

AND EAX, FF

As you can see, it works with registers or values, but you still need to know how it functions. This is one of those important times when you need to know how to convert to binary because AND functions on a binary level. AND goes through and compares every bit in a number with the corresponding bit from another number. If either or both of these bits or 0, the AND results in a 0 bit. If both are 1, the AND results in a 1 bit. Here’s an example:

243 AND 149

In binary, these numbers are: 1111 0011 and 1001 0101. Now we go through and compare each bit. If either is 0, the resulting bit is 0, but if both are 1, the resulting bit is 1.

1111 0011 (243)

1001 0101 (149)

1001 0001 (145) (Result

With the assembly instruction AND, the result is placed in the first value. So with our above examples, the result is placed in EAX both times. This being the case, you CAN’T do something like:

AND 7F, EAX

AND 7F, FF

It won’t work.

Following the AND instruction is the OR instruction, which looks a lot like the AND. You can use the OR instruction just like AND:

OR EAX, EDX

OR EAX, FF

The result of an OR, however, is far different from an AND. In an OR, we go through and compare each bit of a number, but if either is 1, the resulting bit is 1. If both are 0, the resulting bit is 0. For example:

243 OR 149

We already know the binary values are 1111 0011 and 1001 0101. Let’s perform the OR.

1111 0011 (243)

1001 0101 (149)

1111 0111 (247) (Result

You can see that the result is far different from the AND. The result is placed in the first value of the assembly instruction, so the result would be placed in EAX in both of our above instructions. Once again, you can’t do:

OR 7F, EAX

OR 7F, FF

Just like AND, this doesn’t work.

The next logic instruction of interest is the NOT instruction. This one is simply:

NOT EAX

NOT EDX

It only works with registers and only uses one register. Like AND and OR, this goes through and works on the binary level. This time, it makes each bit the opposite of what it was. If it was a 1, it becomes a 0. If it was a 0, it becomes a 1. Here’s an example:

NOT 243

1111 0011 (243)

0000 1100 (12) (Result

The result is placed in the register used in the operation.

The other logic operations we want to look at are the shift operations. The first is the SHL instruction, which is shift left instruction. This shifts the bits of the given number left a given amount. It looks like this:

SHL EAX, EDX

SHL EAX, 4

As you can see, this one works with registers and numbers. The first value must be a register because, like AND and OR, it is where the result is stored. Here’s an example of how the shift works.

Shifting 243 Left 4

We remember the binary of 243: 1111 0011. Now we add four 0s at the beginning.

1111 0011 (1111 0011 0000

Then, we drop the left 4 bits, which leaves us with 0011 0000. Our value is 48 in decimal or 30 in hexadecimal. If we had been shifting by 3, we would add three 0s at the beginning and drop the 3 left bits. Like this:

1111 0011 000
1001 1000

That’s not so hard, is it?

Since there’s a SHL instruction, there is obviously going to be a SHR instruction, which shifts bits to the right. This looks like:

SHR EAX, EDX

SHR EAX, 4

It works just like the SHL instruction, only we add 0s at the beginning and drop the right most bits. For example:

Shifting 243 Right 4

1111 0011

0000 1111 0011
0000 1111

Shifting 243 Right 3

1111 0011

000 1111 0011
0001 1110

That’s all there is to that.

The final logic instruction is the NEG instruction. This is actually useful as both a logic and a math instruction. It stands for negate, and makes the given register negative. For example:

NEG EAX

This makes the value in EAX negative. Without getting into details, negative numbers are very screwy on computers, so don’t be surprised with the numbers you get. If you don’t believe, go onto the Windows Calculator and go into hex mode. Then do 1 – 2 and see what result you get. Rest assured, this is considered to be –1 in hexadecimal, or at least as far as computers are concerned.

Now we’ll look at program flow instructions, starting with the CMP instruction. CMP stands for compare, and is used to compare values and make decisions based on that. You’ll never see a CMP instruction that isn’t followed closely (within a few lines of code) by some kind of jump. The CMP instruction looks like this:

CMP EAX, EDX

CMP EAX, 30

We don’t need to know how exactly the CMP instruction works by itself, only with jumps. In the above example, the CMP instruction compares EAX to EDX and also with the value 30. It will provide methods for our jumps to decide whether or not the jump should be taken and that’s all we need to know.

Very similar to the CMP instruction is the TEST instruction. The TEST instruction compares two values in a manner slightly different than CMP. It looks like this:

TEST EAX, EAX

It’s no typo that I put EAX in there twice. The TEST instruction is usually used in that method and followed by a JZ or JNZ instruction, which I’ll get to in a bit. You can use the TEST instruction with other things, like:

TEST EAX, EDX

TEST EAX, 30

This works perfectly fine, too.

In assembly, there are a number of jumps, and these are one of the most important parts. We’ll start with the unconditional jump, which is the JMP instruction. A JMP instruction is ALWAYS executed. The jump is always taken. It looks like this:

JMP ADDRESS
ADDRESS is the location of code to jump to. This value can be stored in memory, in a register, or given explicitly. So it could be something like:

JMP EAX

JMP 6FAC1FA0

The first one jumps to the location specified by EAX. The second one jumps to 6FAC1FA0. And remember, this jump is always executed.

There are times when we don’t always want to jump. We may only want to jump when two numbers are the same or when one is greater than the other. For this we have conditional jumps. Here’s a list of the important condition jumps:

JE – Jump If Equal

JNE – Jump If Not Equal

JZ – Jump If Zero

JNZ – Jump If Not Zero

JG – Jump If Greater Than

JGE – Jump If Greater Than Or Equal To

JL – Jump If Less Than

JLE – Jump If Less Than Or Equal To

As you can see, we can make our jump based on a variety of numerical things. Each of these jumps works just like the JMP instruction:

JE ADDRESS

JNE ADDRESS

JZ ADDRESS

JNZ ADDRESS

JG ADDRESS

JGE ADDRESS

JL ADDRESS

JLE ADDRESS
And just like the JMP instruction, the address can be given in any number of ways. From memory, directly, or through a register. They’ll all work. So now that you know what these conditional jumps do, you need to know how to use them. Conditional jumps always preceded by a CMP or TEST statement. It is from this CMP/TEST statement that the jump decides if it should or shouldn’t be taken. Here’s an example:

MOV EAX, 14

CMP EAX, 12

JGE ADDRESS
We know what the MOV instruction does, it moves the value 14 into EAX. Now we call the CMP statement. We’re comparing with the value 12. Let’s look at the jump below it. This is a JGE jump, so we jump if the CMP instruction was greater than or equal to. Is 14 greater than or equal to 12? It’s greater than, so we take the jump. Here’s another example:

MOV EAX, 14

MOV EDX, 32

CMP EAX, EDX

JGE ADDRESS
This time, we’re moving 14 into EAX and 32 into EDX. Once more, we do a CMP instruction, this time between EAX and EDX. Our jump is a JGE instruction again, so we need to decide if 14 is greater than or equal to 32. This time, it’s not, so we don’t take the jump. If we switched the code to:

MOV EAX, 14

MOV EDX, 32

CMP EAX, EDX

JL ADDRESS
We would take the jump. Why? Because we’re now checking to see if 14 is less than 32. Since it is, we jump. There are other jumps, but these are the ones we really care about.

Now let’s look at the CALL instruction. CALL is a lot like JMP. When used, call looks like this:

CALL ADDRESS
And works similar to JMP. The address can be stored in just about anything, and the CALL is always made. The difference is that a CALL statement will return to the code right after the CALL statement is made. So if we had:

CALL ADDRESS
ADD EAX, 4

MOV EDX, EAX

All the instructions would execute. First, we would jump to the code at the CALL instruction’s address. Once we finished with it, though, we would jump back to the ADD EAX, 4 instruction and do that. Then we’d do the MOV EDX, EAX instruction. If this were a jump, we would go to the address, but we wouldn’t come back to execute the rest of the code.

In order for a CALL statement to know when to return to the address right after where it started, it needs a RETN, or return, instruction. RETN can look like:

RETN

RETN 4

We don’t really care about the difference. Both will take the code back to right after the CALL statement was made.

The final instruction we’re going to look at is the NOP instruction. This stands for no operation, and does exactly that; nothing. The instruction looks like this:

NOP

Amazing, huh? NOP statements can be very useful when we need extra code space to fit our own modifications in. They’re also very useful when we need to remove/nullify a section of code.

We’ve seen all the instructions that I’m going to show you, but we’re not quite done with them yet. I’ve shown you how to do things like:

PUSH EAX

POP EAX

ADD EAX, 1

MOV EAX, EDX

But on a number of instructions, I mentioned that it works on memory as well. I haven’t shown any examples of using memory, though. Every item in memory in a program has a location. This location is nothing more than a number, but it is this number that we use to access it. We access it with a statement like:

DWORD PTR DS:[LOCATION]

What that code says is that we want to get the DWORD value of memory at the given location. Here’s an example:

[image: image10.png]
Let’s saw we wanted to get that E2. We’d say:

DWORD PTR DS:[0029800C]

That would get us the value at 0029800C, which is E2. However, we need to use that value for something, so we can’t just put:

DWORD PTR DS:[0029800C]

Instead, we’d have a complete instruction like this:

PUSH DWORD PTR DS:[0029800C]

MOV EAX, DWORD PTR DS:[0029800C]

JMP DWORD PTR DS:[0029800C]

MOV DWORD PTR DS:[0029800C], 4

POP DWORD PTR DS:[0029800C]

Those last 2 instructions are a little bit different from the first ones. Instead of getting the value E2 from the memory, those instructions will change the value at that location. The MOV instruction changes the value from E2 to 4. The POP instruction would change the value from 4 to whatever is on the top of the stack. Both are perfectly valid instructions.

When getting memory, we don’t have to explicitly say the location. We could do something like:

DWORD PTR DS:[EAX]

DWORD PTR DS:[EAX + 6C]

DWORD PTR DS:[EAX * EDX]

Any of those are valid ways to find the memory.

While this hasn’t been a full, in-depth explanation on assembly, it should be enough to get you started. You may find that some of the stuff I said isn’t completely accurate, but that’s because it takes too much detail and time to go into exactly how everything works. What I’ve told you is what you need to understand to begin navigating through the Diablo II code. If you are interested in learning more assembly, check out these web sites, which contain tutorials, references, etc.

Assembly Language Programming on the 80x86

http://www.escape.ca/~rrrobins/Assembly/
Intel’s Assembly Guide

http://developer.intel.com/design/pentium/manuals/24319101.pdf
Assembly Tutorial

http://www.xs4all.nl/~smit/asm01001.htm
Another Assembly Tutorial

http://thsun1.jinr.ru/~alvladim/man/asm.html
The OllyDbg Assembler/Dissassembler
Now that we know some basic assembly, lets take a look at the assembly code inside one of the Diablo II DLLs. To do this, we’re going to use OllyDbg. This program has a number of features, and the Assembler/Dissassembler is just one of them. Because of this, I’ll be showing you the OllyDbg interface a bit at a time rather than all at once like with XVI32. So let’start OllyDbg and see what we have:

[image: image11.png]
You should see something similar to this. To access the Assembler/Dissassembler, you want to go to “View” then go towards the bottom and select “File”.

[image: image12.png]
This will bring up a familiar dialog box, which you can use to open a file. Let’s open up D2Game.dll and get a look at that.

[image: image13.png]
This certainly doesn’t look like assembly. In fact, it looks a lot like what we saw in XVI32. This is completely true. OllyDbg is also a hex editor (I told you it could do a lot of things). There are a number of ways to view a file, and hex is one of them. Assembly code is another. So let’s learn how to change views. Right click, and you’ll get following menu:

[image: image14.png]
I won’t go through the entire menu, but here’s the important ones. “Search for” will allow you to search for a binary string, an assembly command, an address, or some other things. It depends on what view mode you are in. “Save file” will allow you to save the file. “Go to offset” is just like the “Goto…” option in XVI32. It will bring up a window where you enter the offset to go to and it takes you there. Below those are the view modes. “Hex” will allow you to choose from a few different hex editor displays, including the one we’re in. “Text” will allow you to display only strings, which is the data to the right. You’ll notice the “This program cannot be run in DOS mode.” string again. “Short” doesn’t really matter, and you’ll probably never use it. “Long” has the very useful “Address” display mode, which I’ll explain later. Next is “Float”, which we can ignore just like “Short”. Then we get to “Disassemble”, which is what we really want to do. After that is “Special”, which contains the option to view PE header information. So let’s choose “Disassemble” and see what we get.

[image: image15.png]
You might recognize the DEC instruction, the POP instruction, the ADD instructions, and even a MOV and a NOP instruction in there. However, there’s that strange “????” and all of the ADD instructions are a little odd looking. This is because what we’re viewing isn’t actually meant for assembly. There are lots of things a DLL file, and assembly code is just one of them. What we’re seeing is called a PE header, and if you want to get a better look at it you should go to “Special” view and choose the “PE Header” option. We don’t really care about that, though. Let’s head to some code. Go to offset B2B5E. You should see this:

[image: image16.png]
Now this looks more like assembly. You should be able to recognize almost all of the instructions. This particular sequence of code is for the minor healing potion. The line of code highlighted in gray controls how much the minor healing potion heals. Let’s take a look at it:

MOV ECX, 1E

We all know what this means. We’re moving the value 1E (30 in decimal) into the ECX register. Well, 30 sounds about right for the minor healing potion. So to change how much the minor healing potion heals, we should put in a new value at this statement. Our new code should look like this:

MOV ECX, New Value
Where the new value is the value you we want to heal, and this is in hexadecimal. Let’s change it to heal 50 instead of 30. Remember that 50 in hexadecimal will be 32. So we want our new code to look like:

MOV ECX, 32

To change this, make sure you have the MOV ECX, 1E line highlighted in gray. Then right click and choose “Assemble” from the menu.

[image: image17.png]
This brings up OllyDbg’s assembler screen, where you can enter in the command you want to do. You’ll notice it starts with the command we have highlighted.

[image: image18.png]
Just type in MOV ECX, 32 and hit the “Assemble” button and the code will change.

[image: image19.png]
As you can see, the assembler screen stays open, but our code has indeed changed. When you’re finished with the assembler screen, just hit “Cancel” and it will close.

[image: image20.png]
We’ve now changed the minor healing potion to heal a base of 50 instead of 30. It was as simple as that. Of course, this is the most basic of assembly changes, and we did it more to introduce you to OllyDbg than to learn complicated assembly.

The OllyDbg Debugger
Although we can use OllyDbg for assembly and disassembly, we’ll use it a whole lot more for it’s debugging capabilities. The debugger potion of OllyDbg will allow us to follow the lines of code in the Diablo II program as they are executed. It will show us the values in all of the registers and stack as well. This is how you can track down what locations of code do what. Before we can go code hunting, though, we need to understand how the debugger works. We start by opening up OllyDbg once again:

[image: image21.png]
Now that we’ve started OllyDbg, go ahead and start Diablo II. You should probably start Diablo II in windowed mode because you’ll be switching between it and OllyDbg quite a bit. You can do this by add “-w” to the command line. Once Diablo II is running, we need to attach OllyDbg to it. We do this using the “Attach” option in the “File” menu.

[image: image22.png]
This brings up a list of the currently running processes on your computer. There might be a number of things, but the one we’re interested in is Diablo II.

[image: image23.png]
When we hit the attach button, a single window will pop up broken apart into many different sections. We’ll start by examining this window, then we’ll open a few others and look at those ones, too.

[image: image24.png]
As you can see, this window displays almost everything we talked about in the Basic Assembly section. First, we have the program’s code. We can follow this step by step as the program executes if we want. I’ll explain how later. We can also see the values of the program’s registers. You should recognize each of them from the Basic Assembly section. We can also see the program’s stack. The “top” of the stack is highlighted. I say “top” because you may notice that there are certain pieces of code that can change the location of the top of the stack. Finally, we see a dump of some of the program’s memory. The first part is the address/location and the second part is the value. Now let’s open up another important window, the executable modules window. This window is opened by going to “View” and choosing “Executable Modules”.

[image: image25.png]
This window contains a list of all the parts of the program that contain code. You might recognize the names of a number of Diablo II DLLs on there.

[image: image26.png]
Next, we’re going to look at the breakpoints window. This one is opened by going to “View” and choosing “Breakpoints”. It looks like this:

[image: image27.png]
It starts empty, but we’ll be using it a lot later, so make sure you have it open. The information is broken up into columns, but it doesn’t make much sense until we have a breakpoint to use as an example. So let’s just skip that for later. The final window is the run trace window. Like the others, this is under “View” and the menu choice is called “Run Trace”.

[image: image28.png]
Like the breakpoint window, this one doesn’t have anything at the moment. We’ll be using it a lot later, though, so we should have it open. By now, your screen should look something like this:

[image: image29.png]
You may have noticed that the code in the window with the assembly isn’t moving. You may also have noticed that if you tried to click on Diablo II, it appears to be frozen. This is because the program is current paused. You can tell if the program is paused by looking at the status bar in the bottom right. You’ll notice it says “Paused” in nice red letters. To start the program we can use the “Debug” menu.

[image: image30.png]
As you can see, I’ve circled a number of options. This is because each of these options is a way to run the program and they all run the program differently. Let’s go through them, starting with “Run”.

If you choose “Run” the program will begin running again and OllyDbg WON’T run along with it. This means it won’t follow code in the assembly window or change the registers in the register window or any of that. This is how you’ll usually be running Diablo II because we don’t want to know each and everything that Diablo II does. Doing so slows the program down an unbelievable amount and usually results in the program terminating unexpectedly.

The next two options, “Step into” and “Step over” are very similar. They both execute and follow the current line of code and then pause again. They’re good if you want to examine the changes in the stack or the registers very carefully. The difference is when it comes to CALL statements. Remember that CALL statements take you to another part of code and execute it. If you choose “Step into” you’ll go to the first line of that new code and stop there. This is why it is called “Step into”, because you go into the call. “Step over” therefore steps over the CALL. It doesn’t really go over it, but instead it executes all of the statements in the CALL before stopping. Then it stops on the statement right after the CALL. This is good if you want to skip over a pointless or long CALL statement.

The two options after this are “Animate into” and “Animate over”. The difference between these two is the same as the difference between “Step into” and “Step over”. One goes into the CALL and the other goes over it. These both differ from the step choices because they continue to execute and follow code non-stop until they reach a breakpoint or the program closes.

The final choice is “Execute till return”. This is useful if you want to see all the code of a CALL. This will execute and follow code until it reaches a RETN instruction for the current procedure. It will also stop when the program closes or it reaches a breakpoint.

Of all the options, you’ll be using “Run”, “Animate into”, and “Animate over” the most often. Your question now is probably, “If ‘Run’ doesn’t follow the code, then how do I get OllyDbg to stop at a particular spot?”. Remember that you’ll be using “Run” to run Diablo II most of the time otherwise it will go to slow for you to do anything and it will probably crash. The answer to the question is to use breakpoints. As the name implies, breakpoints cause the program to break/pause when it comes across the breakpoint code. Let’s put are first breakpoint in at the same spot we changed MOV ECX, 1E to MOV ECX, 32 for the minor healing potion. Your first impulse might be to try to go to offset B2B5E like we did before. If you try to, though, it won’t work. This is because the offsets are different when the program is running. When the program is running there are a lot of files that need to be loaded and a lot of them are going to have the same offsets. Since this is the case, the first four numbers of the offset change to different numbers. In this case, our offset, which is actually 000B2B5E, will become 6FCE2B5E. The first four change and the last four stay the same. This is usually the case, although you will come across situations where this isn’t always true. So right click and choose “Goto” and then “Expression” and enter in 6FCE2B5E.

[image: image31.png]
When you click OK, though, something unexpected happens.

[image: image32.png]
Why does this happen? Because our code hasn’t been loaded into memory yet. Remember that this is in D2Game.dll. If you look through the executable modules window, which shows all of the DLLs used by this program, you won’t see D2Game.dll. You also won’t see D2Common.dll or D2Client.dll. To get these to load you must start and enter a game. Then they’ll show up. So hit cancel and enter a game.

Now you should see a few new DLLs come up highlighted in red on the executable modules screen. D2Game.dll will be one of them, so now we can go to that code.

The code may look familiar from before. It should, it’s the same code. You may notice something like this, though:

CALL <JMP.&D2Common.#10841>

This looks a little different from the CALL statements we saw in the dissassembler. That’s because we didn’t have all the DLLs loaded into memory. Now that we do, OllyDbg can see that the statement is actually calling function 10841 from the D2Common.dll. Whenever one of the DLLs calls a function from another DLL, it will more than likely look like this. Just remember that that’s what that means. Other than that, it is no different than any other CALL statement.

Enough of that, though. We want to place a breakpoint and see how they work. You can do this by either right clicking and selecting “Breakpoint” and then “Toggle” or you can just press F2. This is the same as using the menu. I recommend you get use to pressing F2 because you’ll use a lot of breakpoints.

[image: image33.png]
Now that our breakpoint is set, we have two indications of this. Our line of code is has a red mark to the very left and the breakpoint has appeared in the breakpoints window.

[image: image34.png]
[image: image35.png]
Now we can take a better look at the breakpoints window, since we have a breakpoint in it. You can see that it shows the location of the breakpoint and also what executable module it is in. Next you see the column called “Active”. This says “Always” because our breakpoint will always stop the program. You can make conditional breakpoints that will only stop the program if a certain condition is met. The condition will be displayed in this column. Finally, it shows the code for the line our breakpoint is at. MOV ECX, 32. So let’s see how the breakpoint works. Make sure you have some minor healing potions. Right click and use one. The second you do, it seems like Diablo II has froze. Well, that isn’t all together incorrect. It’s paused because it hit the breakpoint we set. Go out and click on OllyDbg, which you’ll notice is highlighted in blue on the task bar.

When you go into OllyDbg the code will be stopped at the breakpoint. You’ll now be able to look at the stack and the registers and see what their values are. If you want, you can use the “Step into” and “Step over” choices a few times just to get the hang of how it works. You’ll notice that each time a register changes it becomes red. This makes it fairly easy to identify which registers are probably being used for whatever function we’re doing. Some will change permanently while others will end up back like they were at the start of the function because they’re PUSHed onto the stack at the beginning and POPed from the stack at the end. When you’re sick of playing around with the “Step into” and “Step over” stuff, choose the “Run” option again and go back to Diablo II. The game is now running like normal again and the minor health potion has been used. Now we’re going to look at using run traces, so use another minor health potion. Once more the program freezes and we can go to OllyDbg to see it at our breakpoint. Before you do anything, though, go to the “Debug” menu and choose “Open or clear run trace”.

[image: image36.png]
You’ll notice that something has appeared in the run trace window.

[image: image37.png]
This is the line of code we’re currently stopped at. With run trace, each time a line of code is executed it will be added to the run trace window. This will let us go back and look at all the code executed between two breakpoints or in some function. If you like, you use “Step into” and “Step over” to see what happens. When you get sick of that, you can choose the “Execute till return” option. Once you do, you’ll notice that the run trace window fills up with lines of code and that you’re stopped at a RETN statement.

[image: image38.png]
The advantage of using “Execute till return” is that it’s fast and we don’t have to have a second breakpoint. This disadvantage is that it works like “Step over” and it doesn’t go into any of the CALL instructions. Either way, the run trace window now has a list of instructions from our breakpoint to the RETN instruction. Just as an important note, the most recent instruction is actually at the very bottom and the first instruction called is at the very top. You can also use “Animate into” and “Animate over” to do a run trace. Just make sure that you have two breakpoints, one to start at and one to end at. If you don’t, those will both go on indefinitely and probably result in a crash.

This is just about everything you need to understand about the OllyDbg debugger. There are a number of other features, but these are the main ones and the one’s you’ll probably use most often.

Conclusion
By this point you should understand hexadecimal, some basic assembly, and how to use XVI32, OllyDbg, and the Windows Calculator for you code editing purposes. If you’re looking for more information or for things that can be changed, you want to go to the Phrozen Keep’s code editing forum, which is at http://www.planetdiablo.com/phrozenkeep/forum.htm. Just scroll down a little ways and you’ll find it.

In the future I hope to have to include a section on how to find things the Diablo II DLLs and a section that has a list of all the known code editing tricks (like starting chars with skill points or fixing that Barbarian/Assassin critical hit bug). That way you won’t have to go searching for those things. I’d also like to put in a section that contains information regarding all of the currently known functions, structures, etc. We’ll see how things go.

All in all, I think you’ll find that the most important thing to getting anywhere is to practice. After a little while you’ll begin to know exactly what instructions do what and how all the instructions work together to form a function. You’ll begin to know what to look for when you want to change things and how to find it. All you need to do is practice. The best place to start is by going to the Phrozen Keep’s code editing forum and finding a few examples that list the ASM code. Then look at it and try and follow along with what they changed. It probably won’t be as hard as you expect it to be. And it will help you to see how things are usually changed.

Credits
I’m sure I can’t think of everyone who deserves a spot in the credits, but I’ll certainly try. If I left you out, please e-mail me at sir_general@planetdiablo.com and I’ll make sure to add you in.

Special thanks to:

Jarulf

FoxBat

Apocalypse Demon

RicFaith

Myhrginoc

Alkalund

Maxbogus

Thunder

And last of all…

The Phrozen Keep and their host

PlanetDiablo at the GameSpy Network

