
The Beginner’s Guide
To Mod Making

for

Diablo II
Lord of Destruction

by

Phrozen Heart
Mordini
Fusman

Myhrginoc

Version History
v1.4 9/8/2003 Updated to include v1.10 and v1.10s beta information. Expanded

and included some explanations.

v1.3 6/22/2002 Complete rewrite to provide examples and detailed explanations.
Incorporates several exercises which were previously stand-alone
tutorials.

v1.2x beta 4/18/2002 Pretty much a total rewrite to hopefully help iron out any previous
confusion that might have occurred. These versions were all closed
betas only.

v1.1 12/8/2001 Added a link on the ‘Step 1’ page to the latest datafile for use with
MPQ Viewer as some people have had problems extracting string
files.

v1.0 10/4/2001 First public release.

Additional Credits
Mike Meneldil Heynooffense Peaceatlast20
Rich Grenfell
Paul Siramy

Soul Slayer
Alkalund

Rage AA
Joel Falcou

Drackin ChaoticDeath chippydip

Getting Started

The journey of a thousand miles
begins with a single step

Welcome to Diablo II, the way you want it! You have played the standard game enough, the Realms lag
so much, and maybe you downloaded a modified version and wondered how they could change things so
much. Now you want to try yourself, but don’t know where to begin. This guide will show you where to
find what you need, and how to make simple changes. There are often several ways to accomplish the
same things; any method written in this document is but one way to get there.

Previous versions of the Guide were written for version 1.09. With the recent releases of the 1.10 betas,
some files have changed extensively while others are relatively untouched. Some explanations herein
will be general to both versions while others will be version specific. If you decide to mod 1.10 beta,
keep in mind there are quite a few bugs. The exercises in this Guide are unlikely to be affected when the
official 1.10 version is released, but more advanced techniques you learn later will certainly be affected.

It is possible to mod for earlier versions of the game, but that is outside of the scope of this Guide. We
will concern ourselves with modding 1.09 and beta 1.10. A new version of the Guide will be issued after
1.10 has been officially released and Battle.net is updated.

Source Files

Look in your Diablo II directory (usually C:\Program Files\Diablo II). You will find a lot of files, most of
which we won’t concern ourselves with. The ones of interest are Game.exe and the files with an .mpq
extension. Game.exe actually runs the game. You will also find Diablo II.exe, but that is only a loader
for Game.exe. The mpq files are archive files that contain thousands of data files within them, everything
from item definitions to the movies between acts. These data files can be grouped by their extensions.

d2char.mpq data files for Diablo II – character animations

d2data.mpq data files for Diablo II – everything else

d2exp.mpq data files, sound effects and animations for Expansion features

d2music.mpq Blizzard logo videos and music files for Diablo II

d2speech.mpq character and NPC speech for Diablo II

d2xtalk.mpq character and NPC speech for Expansion

d2sfx.mpq sound effects for Diablo II

d2video.mpq movies for Diablo II

d2xmusic.mpq music files for Expansion

d2xvideo.mpq movies for Expansion

patch_D2.mpq all changes introduced by any patch, not included in release versions

Table 1 - Archive Files for Diablo II Lord of Destruction

The Beginner’s Guide, v1.4 Page 2 of 34

txt 1: database files for static game information
2: descriptive files which are not used in game

bin compiled versions of the txt database files used when the game runs

cof control files for animations

dc6 graphics for inventory, background panels and certain animations

dcc character, monster, object and effects animations

ds1 map files used for area definition and static monster/object placement

dt1 floor, wall and roof tiles used by maps for surface appearances

tbl 1 : string tables for text seen in the game
2 : font kerning tables

wav sound files for effects, speech and music

dat 1 : Diablo II palettes, used for converting dc6 & dcc
2 : Colormaps, to see the same monster in different colors

Table 2 - Diablo II File Types – Inside the Archives

Tools of the Trade

Before you can even start, you will need to get your hands on the basic tools used to access and modify all
of these files. All of the basic tools are available from the Phrozen Keep File Center. A package of
commonly used tools and this Guide are packaged together as the Beginner’s Toolkit.

• MPQ Viewer – for viewing and extracting files from the .mpq archives. There is a separate
datafile for all known contents of the archives, without it MPQ Viewer won’t know what to look
for. The datafile gets changed with almost every game release.

• Tab Delimited Text Editor – for editing the database txt files. D2Excel is designed specifically
for these files, and is available for download. Microsoft Excel or other spreadsheet programs will
work, if you import and export as tab delimited text files with nothing for string delimiters. Also,
MS Excel will corrupt the data table if the rightmost fields are empty. Although the files have .txt
extensions, they are not ordinary text files, so do not use a word processor or even Notepad as
they will corrupt the databases.

• Baron Darkstorm’s Table Editor – for editing string table files. This is an easy tool to use, but it
has trouble with PatchString.tbl file (more on this later). Other tbl editors are D2Tbl and Peer
TBL Editor (v3.38).

• DC6Con and DC6Maker – for viewing and converting dc6 type graphics files.

• CV5 (v5.2) – for extracting, viewing and converting several types of graphics files. One
component, CVDCC.DLL (now at v3.0), is required for dcc files but may be a separate
download. Editing animation files is outside of the scope of this guide.

• MPQ2K and MPQ Stormless Editor – for packing your files into an mpq after you have changed
them.

Another file that may need to be downloaded separately is patch_D2.mpq. This file is not included on the
CD-ROM releases for either Diablo II or Lord of Destruction. You get them normally by logging on to
Battle.net and getting the latest patch pushed to your machine. You can also download patches and install
them separately. Patch_D2.mpq stores updated versions of any file that is located in any of the release
mpq’s. When you make your changes to a file from any mpq, you need to store it in patch_d2.mpq, so
you should not try to modify a CD-only installation of the game. Run at least one patch to update the
game and obtain patch_D2.mpq. Information in patch_D2.mpq will always override earlier versions of
the same data files stored in the release archive files.

The Beginner’s Guide, v1.4 Page 3 of 34

1.07 6/19/2001 Release version of Lord of Destruction

1.08 6/27/2001 Maintenance and features upgrade

1.09 8/21/2001 Major change in game features

1.09b 10/5/2001 Maintenance update

1.09c 11/29/2001 Maintenance update

1.09d 12/5/2001 Maintenance update

1.10 beta 7/3/2003 Major feature changes

1.10s beta 8/4/2003 Bug fixes and changes to 1.10 beta
Table 3 - Lord of Destruction Update History

Many mod makers downgraded to version 1.09b because of a serious bug introduced with 1.09c and still
present in 1.09d. Blizzard had provided certain skills on magical equipment that would be activated by
combat events, these skills are known as “chance-cast skills.” But with version 1.09c and 1.09d, the
chance-cast skills are displayed but no damage is caused by them. You can downgrade to version 1.09b
by replacing three program files with earlier versions: they are D2Client.dll, D2Common.dll and
D2Game.dll. All three dlls are available at the Phrozen Keep in various versions. Save your 1.09d dlls
for use on Battle.net. Do not mix files between 1.09 (b or d) with 1.10, the changes between 1.09x and
1.10 are much greater and you will crash.

Two versions of the 1.10 beta have been released, and more versions are possible before the official
release is made available. Since the version is not yet stable, if you choose to mod 1.10 then be sure your
files are specific to the beta version. Changes to txt and tbl files brought from an earlier beta to a later
beta (or the official release) must be tested again in the new update. The image formats are stable and not
likely to change.

You can identify what version you are running by comparing the properties of your files to the table
below. Right-click on the file in Windows Explorer to see these file sizes (Size, not Size on Disk) and
dates (Modified, not Created or Accessed).

1.09b D2Client.dll 1.08 MB (1,138,745 bytes) 8/16/2001

1.09b D2Common.dll 676 KB (692,281 bytes) 8/16/2001

1.09b D2Game.dll 0.98 MB (1,028,151 bytes) 8/16/2001

1.09d (Battle.net) D2Client.dll 1.08 MB (1,134,644 bytes) 11/29/2001

1.09d (Battle.net) D2Common.dll 676 KB (692,276 bytes) 11/29/2001

1.09d (Battle.net) D2Game.dll 0.98 MB (1,028,146 bytes) 11/29/2001

1.10 beta D2Client.dll 1.02 MB (1,073,204 bytes) 7/3/2003

1.10 beta D2Common.dll 692 KB (708,660 bytes) 7/3/2003

1.10 beta D2Game.dll 1.10 MB (1,159,218 bytes) 7/3/2003

1.10s beta D2Client.dll 1.02 MB (1,073,204 bytes) 7/27/2003

1.10s beta D2Common.dll 696 KB (712,756 bytes) 7/27/2003

1.10s beta D2Game.dll 1.10 MB (1,163,314 bytes) 7/27/2003

Table 4 – Distinguishing Between Versions

The Beginner’s Guide, v1.4 Page 4 of 34

Now you need a way to keep track of all of the files you will be generating within your Diablo II
directory. One method is to make subdirectories within your Diablo II directory, with one mod or test
setup in each subdirectory. You can make a shortcut to Game.exe with a mod directory as your starting
directory. There is also a package of Visual Basic scripts available at the Phrozen Keep which will run
your mods in their own subdirectory and automate changing DLLs for those mods that provide custom
DLLs. You can use the DLL management feature to run mods with 1.09b DLLs while keeping
unmodded Diablo II at the current version for Battle.net play.

The very first thing you should do after downloading the tools is make yourself a workspace separate
from the game files. Make a copy of patch_D2.mpq and save it in a safe directory, that way you always
have a clean version to work from. Make another copy and move it to your workspace. Install the tools
in the workspace so they always look for files there. This is especially important for MPQ2K, which uses
a file with the same name as one of the game components (storm.dll); you must not get these versions of
this file mixed up!

The Beginner’s Guide, v1.4 Page 5 of 34

Exercise #1 – Increasing Quantities
We will start with a very simple modification, changing the number of keys that can stack together. The
standard limit is 12, which is a very low number for chest-studded dungeons like the Durance of Hate.
We will make the upper limit 50 so we don’t keep running back to town for more.

To begin, you will need to run MPQ Viewer. Start the program and click on the File menu. Note there
are two Open options. The first time you run MPQ Viewer you need to load a datafile, which tells
MPQView where to find the various internal files within the archive files. This datafile is separate from
the viewer and changes between versions; be sure you download the latest datafile. To load a datafile,
select the first Open option as shown below. MPQ Viewer will remember the last datafile used.

Figure 1 - MPQ Viewer Open Datafile

Next, click the Open Archive button, or select from the File menu. Select patch_D2.mpq in the File Open
dialog, and the entire contents of the mpq will appear in the main window.

Figure 2 - MPQ Viewer Archive Listing

The Beginner’s Guide, v1.4 Page 6 of 34

The paths you see in front of each filename are their position in the mpq archive, similar to how files and
directorys work in Windows. Table 2 shows there are two types of txt files, database files and descriptive
files. We are interested in the database files only, and they are all conveniently grouped together in a
single internal mpq directory, data\global\excel. Scroll down until you see the files listed in this mpq
directory. The file we want is called Misc.txt, so highlight that file and click on the Save button. Save
this file to your workspace. Shut down MPQ Viewer, we are done with it for this exercise.

Open up D2Excel next. Then open Misc.txt using the Load Txt button or file menu option. You will see
something like this screen below. Here is where you see how these text files are actually databases. Each
row is a record, and each column is a field. We want the record for keys so we can adjust the value of the
maximum stack field.

Figure 3 - Using D2Excel on Misc.txt

Now click on the Lock First Column box in the lower right corner. This will allow us to see the names of
the records as we pan the field display. Scroll down until you see Skeleton Key, then scroll right until
you see MaxStack in the header row. Where the row and column intersect is the value we want to
change. You see it is already 12, that is what Blizzard assigned. Now click on that cell and change the
number to 50. Save the file with the Save txt button. The Load and Save bin functions are not enabled.

How did we know Skeleton Key was what we wanted to change, when in game all we see is Key? That is
one of the hard parts of txt files, the name shown here is not necessarily what you would see in play. The
names here are string keys, which are used to point to the display name in the tbl files. We will go into
greater detail during the fourth exercise.

You can see quickly how this change could be applied to any stackable item. Do you want more arrows
in your quivers? Do you want 40-scroll spell books? Just edit the same field in their records. But watch
your numbers! The game will not accept any value over 511.

The Beginner’s Guide, v1.4 Page 7 of 34

Making It Work

Now we have made a change, how do we get it into the game? You have made changes to a txt file, but
the game doesn’t read from them normally. Instead, it reads data from precompiled bin files, which
contain the same information in a compressed, machine-ready format. We already discussed that you
cannot save in bin format with D2Excel. We need to use a special game mode to create a new bin file
from the one we just edited. This special mode is called -direct -txt, after the command line switches used
to enable it. Every time this mode is used, the game will read from all txt files, whether external or in the
mpq files, and create a complete set of new bin files. You will end up with around 70 bin files (1.09x) or
90 bin files (1.10).

In MPQ Viewer you saw how the txt and bin files are stored in the mpq in a data\global\excel directory.
We have to make our own copy of that directory structure in our game directory. In Windows Explorer,
go to your game directory, and create a new directory called data. Inside that directory make one called
global. Inside the global directory make one more called excel. Now go back to your game directory and
highlight game.exe. Copy the file, switch to your desktop, and right click to paste a shortcut on the
desktop. Next, right click on the new shortcut and choose Properties at the bottom of the popup menu.

Figure 4 - Making a -direct -txt shortcut

Here is where you enter the information that makes Diablo II run in -direct -txt mode. In the Target field,
make sure the full path name (use your system’s path) is in quotes as above, if the path name contains any
spaces. Then after the path name (outside the quotes if present) add -direct -txt spaced as above. Save
the shortcut.

Now copy the newly-changed Misc.txt to the data\global\excel directory you made in your game
directory. Start Diablo II with the new shortcut and send a test character into a game. You should always
use test characters in any new mod so if you crash and somehow scramble your character file, you won’t
have lost something important. Quit this game, unless you want to go buy some keys and see if you get
more than twelve.

The Beginner’s Guide, v1.4 Page 8 of 34

 If later you change txt files after generating bin files, it is a good idea to delete all of the bin files in
data\global\excel before running Diablo II in -direct -txt mode. This ensures you will start with bin files
that correspond with the latest txt files. Some information in certain files is used by other files when their
bin files are generated.

At this point you will normally decide if your mod will use mpq files or run in -direct -txt mode. In the
first mode, you pack your changes into patch_D2.mpq, move patch_D2.mpq into your game directory,
and start the game as usual. Also, if you are planning to share your 1.09b or 1.09d mod with a Mac user,
this is the only way that works on a Mac (and unfortunately this doesn’t work for 1.10 beta). The second
mode doesn’t require packing into the mpq, but all players have to set up their system for it.

We will now take the changed txt file and the newly compiled bin file and insert them into the patch mpq.
Go into the data\global\excel directory you made. Find misc.bin and copy it to your workspace.

MPQ2K is a DOS program

Before we can run MPQ2K we have to make a couple of supporting files. MPQ2K doesn’t run under
Windows, so if you were to click on the file in Windows Explorer, you would see a DOS window flash
on your screen and disappear. What you need to do is make a script file with MPQ2K commands and a
batch file to run the program. Fire up Windows Notepad; both of these new files are ordinary text files.

We will start with the script file. The important commands in MPQ2K are Open an Archive, Add to an
Archive, and Close an Archive. In Notepad, make a four-line file as below and save it as MPQLoad.txt.

O patch_D2.mpq
a misc.txt data\global\excel\misc.txt
a misc.bin data\global\excel\misc.bin
C patch_D2.mpq

Be sure you refer to directories using the backslash as shown. Using a forward slash is a very common
typo, but in DOS programs the backslash represents a directory level.

The Open and Close archive commands must have capital letters. If you use a lower case ‘o’ in the first
line, you will open the archive read-only, and you cannot add files. For the add commands, there is an
upper case form and a lower case form. The only difference between the two is the lower case form also
compresses the file it inserts, a useful way to minimize mpq size as you pack more and more files into it.

Now for the batch file. Type the single line in Notepad, and save this file as RunMPQ2K.bat. Be sure to
replace “Text Document” with “All Files” in the Save As Type dropdown or your files will be named
RunMPQ2K.bat.txt.

mpq2k s MPQLoad.txt

You are ready to pack the mpq at last. Make sure you have your working copy of patch_D2.mpq, your
new bin and txt files, your script and batch file, and MPQ2K’s four files (mpq2k.exe, staredit.exe,
storm.dll, lmpqapi.dll) in your workspace directory. Double-click on the batch file in Windows Explorer.
You will still see a DOS window flash and disappear, but at least it is doing something.

You can see the results in a log file, if you change the batch file to this:
@echo off
mpq2k s MPQLoad.txt > MPQLoad_Log.txt
type MPQLoad_Log.txt | more
pause

This generates an additional file that can be viewed in Notepad, and allows you to view the results as they
happen in a DOS window as shown on the next page.

The Beginner’s Guide, v1.4 Page 9 of 34

Figure 5 - MPQ2K in a DOS Window

Check one more time to be sure you copied the original patch_D2.mpq to a safe place. Now copy the
modified patch_D2.mpq to your game directory. Run the game normally, don’t use the -direct -txt
shortcut you made earlier. Play for a while and see that you can stack up more than twelve keys in one
slot. Congratulations on making your first D2 mod!

The Beginner’s Guide, v1.4 Page 10 of 34

Exercise #2 – Stocking the Vendors
This exercise was written originally for versions 1.09b and 1.09d. In 1.10 mana potions are already
buyable. But you can see how it is done in 1.10 by following the steps in this exercise. The same
technique is applicable to other potions, gems, runes, miscellaneous items, and even weapons and armor.
The vendor fields work the same way in all versions.

In the first exercise you learned how to extract files, edit txt databases, run in -direct -txt mode and pack
the mpq with your changes. For this exercise we will return to Misc.txt and learn how to make vendors
sell additional goods. The techniques are the same; we are just changing different records and fields.

Open Misc.txt and find the lines for healing and mana potions. Scroll right until you see the Code field.
You can see how the names in the Name column don’t agree with the display names for these potions.
For example, Strong Healing Potion here shows in game as Greater Healing Potion, while Greater
Healing Potion here is the Super Healing Potion in game.

Figure 6 - Potions in Misc.txt

Now scroll right to the many fields where vendors are given the ability to sell any items. Each vendor has
five fields. We will start with Akara, since she already sells healing potions. Getting her to sell mana
potions also is as simple as using mana potion codes in the same way healing potion codes are used. In
this case, we would enter 8 in AkaraMin and 16 in AkaraMax for the Lesser Mana Potion record. The
other three fields refer to magical items, which is outside of the scope of this exercise.

Figure 7 - Potion Selling by Akara

You can go from act to act making the same changes for Lysander, Alkor, Jamella and Malah, giving
each vendor the ability to sell mana potions just like they already sell healing potions.

The Beginner’s Guide, v1.4 Page 11 of 34

The last part of this exercise is making vendors sell better potions in higher difficulties, and never running
out of potions. To do this, we will scroll to the far right of the database.

Figure 8 - Better Potions, Always Potions

Observe that the better grades of healing potions are listed in the upgrade fields, and use the same pattern
in the mana records. Code “mp4” is Greater Mana Potion and code “mp5” is Super Mana Potion. Code
“xxx”means not applicable, so we want to change the corresponding xxx values to mp4 and mp5. Last of
all, change the PermStoreItem field to 1 for the mana potion records to make them always available. (A
bug in 1.09x makes this work in Normal only, for higher difficulties you have to leave town and come
back to replenish the vendor’s stock. In 1.10 use the Multibuy field to avoid this.)

As in the first exercise, save the edited file to your workspace directory. Copy the new Misc.txt to your
data\global\excel directory, use your -direct -txt shortcut to start a game and generate bin files. Then copy
misc.bin back to your workspace and pack patch_D2.mpq. You can use the same MPQ2K script as last
time, since these changes were in the same database file.

The Beginner’s Guide, v1.4 Page 12 of 34

Exercise #3 – Enchanted Paladin Shields
In this exercise we will look at the automatic modifiers some item types have. The automatic mods are
usually bonuses to skills, such as sorceress skills on staves. Because sorceresses always have had skills
available on staves, these automagic mods are often called Staff Mods. You can see this in the column
header too. Except as detailed below, all steps are the same as in the first exercise. For this exercise we
will need ItemTypes.txt.

Figure 9 - Paladin Shields

This view shows Microsoft Excel using the Freeze Panes display mode, which you set by positioning the
cursor at Cell B2 and then selecting menu option Window | Freeze Panes—this has the same effect as
locking the first column in D2Excel. Scroll down until you see the Auric Shields record, then scroll right
until you see the StaffMods field. Enter the class code for Paladin in the field as shown above. This will
make all Auric Shields spawn with Paladin skills, similar to scepters, in addition to their inherent
resistances. Save this file to your workspace, test and insert to mpq as usual.

This example shows applying Paladin skills to a Paladin shield (remember “Auric Shield” is not what gets
displayed). In our case, you could have put other Class skills (like Sorc skills) than the Paladins ones, but
only Paladins can use this item type so that would be useless. But you can apply any class to the
StaffMods field for any item type. Remember all items spawned from an item type will get the bonus
skills, so setting the “tors” item type with “dru” staff mods would result in every single body armor
having druid skills, which is rather extreme.

This time we will use WinMPQ to pack our txt and bin files. Start the program, then go to the Options
menu and select the File Lists tab. You can enter the same datafile here that you use for MPQView, using
the Add List File command. The picture shows two lists are entered, as this setup is configured with one
list for Diablo II and the other list for the original Diablo.

Figure 10 - WinMPQ File List

The Beginner’s Guide, v1.4 Page 13 of 34

Back on the main screen, select Open and find your working copy of patch_D2.mpq. As before, always
insert your files into this mpq and leave the release archives untouched. You will now see a list of files
stored within the mpq, and some information about their sizes and compression.

Figure 11 - MPQ File Display

Click on the Add command to include your new files. Select the changed txt and new bin files. Then you
have to assign a folder for the added files. Type in the correct folder, as shown below. Remember that txt
and bin files should always be added to data\global\excel if you want to see your changes take effect!

Figure 12 - Selecting the Destination Folder

The added files will then be inserted and the mpq saved. This will automatically overwrite existing files
in the mpq, so be sure you have your backups made ahead of time.

You can also use WinMPQ to extract files from an archive. Open an mpq as before, select the file you
want and click on the Extract command above the file list. Also, the List command will refresh the file
list display; you can use the adjacent dropdown list to select a file filter.

The Beginner’s Guide, v1.4 Page 14 of 34

Exercise #4 – Modifying Item Properties

In this exercise, you will make property changes and learn about the tbl files. We are going to replace the
unique ring Manald Heal with a much more powerful unique, The Eye of Mordini. Except as detailed
below, all steps are the same as in the first exercise.

Open MPQ Viewer and extract UniqueItems.txt from the mpq’s data\global\excel directory and save to
your workspace directory. Then look for the string table named patchstring.tbl. Here we make use of the
filter function in MPQ Viewer, but you have to edit the default .TBL filter to lower case for it to work.
(The filters are buggy and in some cases will miss files. The only way to assure yourself of seeing every
file is to leave the filter as *.* and scroll down the entire list.)

Figure 13 - Choosing a PatchString.tbl File

You will see there are a number of patchstring.tbl files. Pick the file that is in the directory corresponding
to the language you run Diablo II in. For example, if you have a Spanish installation, choose the string
table in the data\local\LNG\ESP directory. Extract the appropriate file to your workspace directory.

Now load UniqueItems.txt for editing as below. This example shows the database file in Microsoft Excel.
Scroll down until you see the record for Manald Heal. Remember from the first exercise this name is not
the one that displays in the game!

Figure 14 - Finding Manald Heal in UniqueItems.txt

The Beginner’s Guide, v1.4 Page 15 of 34

Scroll right through the fields until you get to the one labeled ItemMod1Code (column O in Excel). This
is the first magical property that the ring possesses, “manasteal” which is obviously Steal x% Mana.
Download the Magic Code Master List from the Phrozen Keep to see what all of the magic modifiers are,
or you can extract Properties.txt from the mpq for yourself.

Figure 15 - First Property of Manald Heal

There are four fields associated with each property. The first field is the Magic Code, followed by three
fields (ItemMod1Param, ItemMod1Min and ItemMod1Max) that define the strength of its effects
according to the Master List. The first property for Manald Heal is shown above. ItemMod1Param is
blank, but the other two fields are used. With ItemMod1Min less than ItemMod1Max, when the game
spawns a Manald Heal the ring will appear with a random % Mana Steal between the two values.

Change the ItemMod1Code field from “manasteal” to “mana%” and change both ItemMod1Min and
ItemMod1Max to 50. You have now removed the mana stealing ability from the ring and added +50% to
your maximum mana. With both ItemMod1Min and ItemMod1Max at the same value, that property no
longer has a range of possible values; it will always spawn the same.

Figure 16 - Changing to Increased Maximum Mana

UniqueItems.txt has fields for up to ten separate properties, each with its four-field definition; all ten work
the same way. Below are two examples of other changes you can make. Once you are done, save the
file. If you are using Microsoft Excel or other spreadsheet, be sure to save the file as tab delimited text
file or it won’t work in the game.

Figure 17 - Add 50% to All Maximum Resists

Figure 18 - Add +1 to +3 to All Skills

Editing String Tables

We are not done yet. We changed the properties of the ring, but it is still called Manald Heal. So we
have to change the string tables to show the new name for the item. Before we roll up our sleeves and get
to work, we need to discuss what string tables are and how they function.

The Beginner’s Guide, v1.4 Page 16 of 34

Almost all text displayed in the game is stored in .tbl files. This includes items and their properties,
monsters, NPC names, Battle.net logging and error messages, and all of the scrolling text seen when you
talk to a NPC or click on one of the tomes. There are three .tbl files for each language. The oldest file,
String.tbl, is located in d2data.mpq; it contains all of the original game’s strings. Expansion strings are
stored in ExpansionString.tbl located in d2exp.mpq. And most recent changes are stored in
PatchString.tbl in patch_D2.mpq.

The string tables have two fields, regardless of which file you are using. The left field is the string key
and the right field is what displays on screen. In order to properly show an item, the string key in the
source database must match exactly the string key entered into a tbl file. In the case of Manald Heal, the
name is used in both fields, so the string key in UniqueItems.txt was easy to decipher. But it isn’t obvious
that a Hand Axe is called a Hand Axe when its string key is the three-letter code “hax”.

Sometimes a string is defined in more than one file. If so, any definition in ExpansionString.tbl will
override any definition in String.tbl. Any definition in PatchString.tbl will override any definition in
either of the other two files. You might think, why not make changes in PatchString.tbl and not worry
about the other two? There are two reasons why you should not do that. The first reason is that every
time Blizzard releases a patch, there will be a new PatchString.tbl. If you defined five hundred strings for
a major mod, it is not easy to move those strings to the newer version of the file. The second reason is
instability in PatchString.tbl when using the Darkstorm editor (an internal error, and unfortunate since the
editor is very easy to use). For those two reasons, many mod makers choose to extract String.tbl from
d2data.mpq and pack it into patch_D2.mpq after they finish all of their changes. String.tbl is not changed
at all by patches or the Expansion, so additions there are safe. But if you make a change to a record that
appears in either of the other .tbl files, you have to change the record in those files. If you change
String.tbl and not the others, you will never see your new string displayed.

Enough theory for now, let’s change Manald Heal to The Eye of Mordini. Manald Heal is named in
String.tbl since it is from the original Diablo II, so we can either change the display text in String.tbl or
we can add a new record to PatchString.tbl. We will look at how to do both methods, even though you
only extracted PatchString.tbl earlier.

Run the Darkstorm Table Editor (file name tbled102.exe). You will get this opening screen:

Figure 19 - Darkstorm Table Editor

The Beginner’s Guide, v1.4 Page 17 of 34

Open PatchString.tbl and scroll down towards the bottom. You will notice the display string in the right
field is only displayed when you have its string key selected. Also, some keys are nothing more than an
“x” or occasionally a capital “X”. These keys do not correspond to records in any of the txt files; they are
special application strings directly referenced from the executable files. You will also see strings where
the display text reads “All Resistances +%d” – this is where the text includes a variable that is filled in
when the game is running.

Figure 20 - Table Editor with PatchString.tbl Loaded

Since we are adding a new key to PatchString.tbl, click on the Add Key button as shown above. You will
jump to the end of the table and your cursor will be in the left field. You have one chance now to enter
the new string key; you must match exactly the key for Manald Heal in UniqueItems.txt. Fortunately, the
key is the same as the display name, so enter “Manald Heal”. On the right, enter “The Eye of Mordini” as
shown below. It doesn’t matter to the user that the display name doesn’t match the internal name at all.
If you make a mistake, you must delete the key (button next to Add Key) and start over. Be sure you
never delete any of the existing keys, if you won’t be using one then delete the display text for that key
only!

Figure 21 - Adding a New Key and String

Now save the .tbl file to your workspace directory.

The Beginner’s Guide, v1.4 Page 18 of 34

If you were changing String.tbl instead of adding to PatchString.tbl, the process is similar. But instead of
clicking on the plus for Add String, you would click on the binoculars for Find String. This function only
works on the right field; you can’t search by string key. Search for “Manald Heal”, and when that record
is found edit the right field to read “The Eye of Mordini”.

Figure 22 - Using the Search Function

As before, copy your modified UniqueItems.txt file to your data\global\excel directory. But now you
need a place for the modified PatchString.tbl. So enter the data directory, and next to global add a new
directory called local. Inside that directory make one for LNG, and inside there make one for the
language code of your choice – ENG for English, DEU for German, etc. Copy your PatchString.tbl to the
new directory.

If you want to force an English version for your tbl files, for all users regardless of country version, make
a special file by opening Notepad, typing one and only one space, then saving the file as Use (without any
extension). Place this file in the Data\Local directory, and pack it in your mod mpq when you make one.
Your tbl files would then go to the Data\Local\Lng\Eng directory.

Using your -direct -txt shortcut, start a game and generate bin files in your data\global\excel folder. Find
your new UniqueItems.bin and copy it to your workspace. Now make a new version of your MPQ2K
script file so you add the three changed files to patch_D2.mpq:

O patch_D2.mpq
a uniqueitems.txt data\global\excel\uniqueitems.txt
a uniqueitems.bin data\global\excel\uniqueitems.bin
a patchstring.tbl data\local\LNG\ENG\patchstring.tbl
C patch_D2.mpq

When you look through other txt files, you will notice many of them have fields similar to those in
UniqueItems.txt. Any time you see the four fields *code, *param, *min and *max in a group (* being a
common group name), they all work the same as in this file.

Divide and Conquer!

These last two exercises show some simple changes. A full-blown mod has hundreds and even thousands
of changes in it. Don’t change everything at once! Start out making one change at a time, test and
correct, then make the next change. As you gain experience you will feel more comfortable making more
than a few changes between tests. But the more changes you test at one time, the harder it is to find the
change that isn’t working right.

In the next exercise you will learn how to test your new items.

The Beginner’s Guide, v1.4 Page 19 of 34

Exercise #5 – Forcing an Item Drop
By now you have realized it is easy to find keys and arrows, but Paladin shields and Manald Heal rings
don’t fall out of the sky very often. There are several techniques available for forcing a specific drop, but
going into their theory requires a certain familiarity with mod making. The method presented here is the
Quill Rat Drop, named after those ubiquitous pests in the Blood Moor. It is easy enough if you don’t
worry too much about how it works. And here we make the distinction between a debugging version of a
modified file and a release version.

For this test we will extract and modify the file TreasureClassEx.txt. This is a fearsome-looking database
containing most of the mechanism for selecting what gets dropped when you kill a monster or pop a
chest. For now we will look at a very small part of this file, since Blizzard was kind enough to provide a
set of records specifically for Quill Rats.

Figure 23 - Manald Heal from UniqueItems.txt Revisited

We will use the files we modified for the last exercise; we want to see what The Eye of Mordini actually
looks like, and what it does for our characters. Make a copy of UniqueItems.txt so any changes we make
can be reversed quickly; this edit is for debugging only. In UniqueItems.txt, look for the Manald Heal
record again, this time viewing the first few fields. We are interested in three fields as shown above.
First, change both Level and LevelReq to 1. This will allow a Quill Rat to drop the ring, and for our test
character to wear it. Next, make note of the three-letter code “rin”. We will need this code to tell the
game we want Quill Rats to drop it. Save the file and copy it over to your data\global\excel directory.

Figure 24 - Quill Rat Record in TreasureClassEx

Now open TreasureClassEx and scroll down to the first Quill Rat row. You will see these fields used, and
everything to the right is blank until you get far over. This part shown is all we need though. First, delete
all information from the NoDrop, Item2 and Prob2 fields. Next, replace “gld” with “rin” so the Quill Rat
will drop a ring. Now go to the Unique field and enter the number 1024. Without going into a lot of
detail, this forces the drop to be a unique ring. Quill Rats are very low level beasts in Normal difficulty,
so the only unique ring they can drop will be our modified Manald Heal. Save this file and copy it to
your data\global\excel directory.

Now start a game using the -direct -txt shortcut. Go out into the Blood Moor and kill a few Quill Rats.
Check their drops and you should find several copies of The Eye of Mordini. Identify them and they
should be wearable. Put one on and look over your stats. Compare the visible properties and effects
against what you intended with your changes to UniqueItems.txt. If everything looks fine, you have made
your changes successfully and that feature is ready for release. Remember not to use your debugging files
for mod release!

This method only works where the base item or magical property don’t depend on the level of the
character or monster, such as magic and rare items. To make the test more effective, you need to create a
Level 90+ test character with access to Hell difficulty. You can use Jamella’s Hero Editor or
Shadowmaster to create high-level test characters. You won’t need to change Level and LevelReq for
most items when testing with a high-level character in Hell difficulty. Change the Quill 1 (H) record in
TreasureClassEx, ten records past the one shown here, to force high-level drops.

The Beginner’s Guide, v1.4 Page 20 of 34

Exercise #6 – Increasing Area Size
So far, all of the mods have been changes to item definitions and availability. There are many more ways
to change the game! Changing and importing monsters, altering quests, changing graphics and NPC
speech are features in many mods available at the Phrozen Keep, but many of these features are beyond
the scope of this introductory guide. One change which is not difficult is to modify how certain levels are
generated.

There are three types of areas in Diablo II. Outdoor levels are composed of many sections which are
organized somewhat randomly. Each section is a separate .ds1 file. These areas are not expandable (yet).
Other areas are “hard-coded” into one or more configurations, with special monsters and objects included
as part of the .ds1 file. These areas are difficult to expand.

Figure 25 - Editing Maze Size

The third area type is the Maze, which is easy to expand. All you need to do is open LvlMaze.txt and edit
the Rooms field. In version 1.10, this table has additional Rooms fields so you can have different sizes
for each difficulty.

Mazes are found in most Acts:

Act 1 First floor of all caves (excluding Den of Evil)
 Crypt and Mausoleum underneath the Rogue Cemetary
 First four levels of the Forgotten Tower
 Jail and Catacomb levels of the Corrupted Monastery, except Andariel’s Lair

Act 2 Sewers under Lut Gholein
 Stony Tomb
 Halls of the Dead
 Maggot’s Lair
 Ancient Tunnels
 First floor of the Claw Viper Temple

Act 3 both Spider caves
 Flayer Dungeon
 Swampy Pit
 first level of Sewers under Kurast
 first two levels of the Durance of Hate

Act 4 {none}

Act 5 First floor of all Ice Caves

Other areas are listed in LvlMaze.txt. Some of them are known not to work with this method, such as the
second (or “Treasure”) levels of Act 1 caves or the three mini-Hells of Act 5. Others might work as they
haven’t been tested.

The Beginner’s Guide, v1.4 Page 21 of 34

 Exercise #7 – Item Images
We will touch briefly on adding and changing the pictures which are shown when you are in the inventory
screens. Item images are stored in dc6 files located in the data\global\items folder of the archive files.
This isn’t a format that image editors can work with, so you need to use an image converter. To create a
new image, you need to make a picture file, then convert it to dc6 format. To edit an existing image, you
convert from dc6 format, edit the resulting picture file, then convert it back to dc6 format. For this
exercise we will make a new rune image. But there are no blank runes in the mpq!

The hard way is to extract an existing rune from d2exp.mpq, convert it to an editable format, and wipe out
the rune symbol. This is very difficult to do and still retain the lighting effects on the rune image.
Fortunately this isn’t necessary, as there are item packs available at the Keep File Center, and some of
them have what we need already. One such is Riparious’ Gem Pack, which has two different blank runes
in both bmp and dc6 format. Load the bmp version in the image editor of your choice and draw a runic
symbol. The sample below is an Arabic symbol from the Riparious pack, which illustrates the difficulties
in working with inventory images. The small image at left is the true size.

Figure 26 - Sample rune image, actual and enlarged

Inventory images must be particular sizes, in order to line up properly with the inventory grids. Each grid
unit is 28 pixels in either direction, and images must be an integral multiple of a grid unit.

Size Dimension Size Dimension Size Dimension Size Dimension

1x1 28x28 2x1 56x28 3x1 84x28 4x1 112x28
1x2 28x56 2x2 56x56 3x2 84x56 4x2 112x56
1x3 28x84 2x3 56x84 3x3 84x84 4x3 112x84
1x4 28x112 2x4 56x112 3x4 84x112 4x4 112x112

Table 5 - Common inventory image dimensions in pixels

Save your image as a pcx or bmp file, in 256 colors. Diablo II does not use the higher color modes, and
your images may not look right if you save in high color or true color modes. Then start DC6 Maker.

Figure 27 - DC6 Maker opening screen

The Beginner’s Guide, v1.4 Page 22 of 34

DC6 Maker is like Notepad, you start with a blank workspace to begin with. When you are converting an
image file to dc6, you start by inserting it as a frame. This is because the dc6 format is flexible and
supports multi-frame images and even some animations. But inventory images are static, so we need only
one frame for each file. Click the Insert Frame button and select your image file. You will see a small
preview window pop up to the right of the application window.

Each act has its own color scheme, stored in a palette of 256 colors. That is fine for objects and monsters
but not so great for inventory. First, you need to pick a static palette that won’t change between acts.
Click on Palette and select the units palette. Then go to Settings and select Use Transcolor. This sets the
color we want to use for transparent backgrounds, such as the black in the rune image. Inventory uses
color 0 (pure black) as the transcolor, so on the palette window pick the upper left corner color square and
verify at bottom you selected 0,0,0. Then click on the Set Transcolor button.

Figure 28 - Selecting the transparent background color

Back on the main screen, pick Save As from the file menu, then name the file the way you will refer to it
in the game. Then go to the txt file which has the item you just made an image for, and put the file name
(without the .dc6) in the invfile field. If you have made a weapon or armor image for a set or unique
item, use the setinvfile or uniqueinvfile field instead.

The Beginner’s Guide, v1.4 Page 23 of 34

Exercise #8 – Cube Recipes

One of the most entertaining facets of the game is the Horadric Cube. Blizzard provided a few useful
recipes to get each of us started, but the Cube is capable of far more than that. In this exercise, we will
cover the basic structure of a cube recipe, and correct a deficiency in the game. Start by extracting
cubemain.txt from the mpq. The structure of cubemain.txt was radically altered with version 1.09, so this
exercise requires you be running 1.09 or any of the later sub-releases (1.09b, 1.09d). The file is again
radically changed in 1.10, but the parts we will be working with are still the same.

A good way to learn cube recipe structure is to look at the Blizzard recipes. For example, if you want to
have all runes be upgradeable, not just the first nine, then complete the series which is shown in part
below.

Figure 29 - Cubemain.txt Character Qualification section (1.09 shown)

The first part of the database is the character qualification section. The first field is a description of the
recipe, it is only for reference and has no game impact. A recipe must be enabled to be usable, this is a
Boolean field so set it to 1. Min diff is the minimum difficulty required: 0 or blank for normal, 1 for
Nightmare and 2 for Hell. Version is 0 for either Diablo II or expansion games, 100 is expansion games
only. The next three fields compare these values to the day of the week and day of the month retrieved
from your system clock, these appear in versions 1.09b/d only (in 1.10 beta they are Op, Param and Value
and have more general application). Class is the three-letter character class code; if you want to restrict
your recipe to Necromancers, put “nec” in this field.

Figure 30 - Input Section of Cubemain.txt

The second part of Cubemain.txt is the input section. These fields are the ingredients used by the recipe.
Some Blizzard recipe ingredients are shown above. The first input is important, any recipe that
transforms an object works on whatever object is in this first input field. Also, the number of ingredients
must equal the sum of all inputs including the individual quantities. Quotes are used for any input with
sub-fields, such as “fhl,mag,upg”. Three-letter item codes or four-letter type codes are permitted.

The table on the next page lists some of the parameters used for inputs and outputs. Most parameters
work as either input or output parameters.

The Beginner’s Guide, v1.4 Page 24 of 34

= joins parameter
to numeric value upg upgradeable recipe, also works for

exceptional and elite versions any any item, but this parameter
sometimes doesn’t work

low low-grade item crf crafted item eth ethereal item
nor normal item tmp tempered item (1.10 only) nos no sockets on item
hiq superior item bas base item (1.10 only) - input sock add sockets (needs =)
mag magical item reg base item (1.10 only) - output pre magical prefix (needs =)
rar rare item exc exceptional item (1.10 only) suf magical suffix (needs =)
set set item eli elite item (1.10 only) qty quantity (needs =)
uni unique item noe not ethereal item

Table 6 – Some cube recipe parameters

Figure 31 - Cubemain.txt output section

The third part of Cubemain.txt is the output section. These fields describe the properties of the newly-
generated item. Additionally, there are three important parameters that are output parameters only:
useitem, usetype, and sock = #. Useitem will take whatever item is listed in the first input field, including
all properties already present, and apply whatever properties are assigned in the output section. You can
use the useitem parameter to make recursive recipes, where you keep improving an item up to game limits
by reapplying the recipe over and over. Usetype will take the base item from the first input field, strip all
existing properties away (including ethereality!), “re-roll” the item’s characteristics and apply output
properties. Finally, sock will apply the designated number of sockets to an item, up to game-defined
limits.

The three level fields (lvl, plvl and ilvl) control the level requirements for random properties. If lvl is
used, the other two fields are ignored and all random properties will be that level or higher. If only plvl is
defined, then the maximum level for random properties (also known as ilvl and this can be confusing) is
plvl% of player's level, and there is no minimum. If only ilvl is defined, the value is the percent of the
level for the item in the input1 field, or the old_ilvl. If plvl and ilvl are both defined, then plvl% of the
player's level is the minimum, and ilvl% of old_ilvl is the maximum. In any case, the maximum level for
properties is capped at 99 for all practical purposes. The character level required to use the new item will
be the level requirement for the highest mod on the item, plus 3 for each random mod.

There are five property blocks after that, the first one of which is shown above. These blocks are used the
same way as the property blocks in UniqueItems.txt, with one addition. If a value is used in Mod #
Chance, that property has the value percent chance of being generated. So if you want a property to
appear about a third of the time the recipe is used, put 33 in this field.

In 1.10x, there are actually three output sections. The second and third output sections are structured the
same way as the first, but field names are similar to b ilvl and c mod2 param. We won’t be using the
other outputs in this exercise, but they can be used to have cube recipes with more than one output. An
example would be a catalyst recipe, where an object used as a recipe component is returned to you
unchanged.

The Beginner’s Guide, v1.4 Page 25 of 34

Okay, we have thrown a lot of information out about cube recipes, how do we use it? Let us correct a
deficiency Blizzard coded into the game. After Act 2 normal difficulty, it is impossible to buy normal
items from the vendors, everything is magical. So we will make two recipes, one to convert magical
weapons to superior socketed weapons, and one to convert magical armor to superior socketed armor.
This is one of those cases where the “any” parameter does not work, so we need a recipe for each. We
will allow any magical, non-socketed item plus two Identify Item scrolls create the maximum number of
sockets possible in the new item. See the previous figures for locating the right fields to input data.

Make two new rows at the bottom of Cubemain. When adding rows, it is important to remember never to
insert a row, always add it on the bottom. Inserting rows may work in a few txt files, but causes severe
problems in most. Type a brief description of the recipe function in the first field for each row. Then
skip over to the input section and enter 3 in the NumInputs field. In the first input field of the weapons
record, enter “weap,nos,mag” for magical, non-socketed weapon. For the armor record, “armo,nos,mag”
is put in the first input field. In both records, the second field should read “isc,qty=2”. Now scroll to the
output section, and put “usetype,hiq,sock=6” in the output field for both records.

Save the file, make bins, pack to mpq as in previous exercises. Go into a game and find or buy a magical
weapon and a magical armor. Get some identify scrolls and test the recipes. Remember you won’t get
six sockets for many items, and in the lower difficulties no more than three. You will also see the new
items can get superior grade properties where those are generated. With multiple recipe pairs, you can
control the number of sockets more precisely, and have any item available for runewords! A sample set
of recipes is shown below, downgrading a magical item to a superior item using any charm. Perfect gems
are used to specify how many sockets are added.

Figure 32 - Sample set of socketing recipes

The Beginner’s Guide, v1.4 Page 26 of 34

Exercise #9 – Editing Skills
Skills editing is a feature that covers the spectrum of mod making difficulty. Some changes can be
accomplished by editing the skills.txt table, whereas other changes involve editing graphic files and even
the game code itself. We will limit ourselves in this exercise to txt file changes. We will change the
Necromancer Teeth skill into Ice Bolts.

For this exercise, extract missiles.txt, skills.txt and string.tbl from the mpqs. In the figures below, certain
fields have been squeezed to bring important fields together. Between versions 1.09b/d and version 1.10
there are many changes in both Missiles.txt and Skills.txt. Although the figures below are for 1.09b/d, the
fields we will change are the same in both versions.

Figure 33 - Teeth in Missiles.txt

Start with missiles.txt, and scroll down to the Teeth record. Scroll right to the RGB color fields as shown
above. The default for Teeth is 255/255/255, which is bright white. To give the new ice bolt a bluish
cast, change these fields to 81/81/255.

CelFile is the name of the missile animation without the dcc extension. Change this field to “icebolt”
(without the quotes). Each dcc file has a specific number of animation frames, and that number must
match the number in the AnimLen field. Change this field to 6.

LoopAnim, SubLoop, SubStart and SubStop are fields which control how animations are repeated while
the missile is in flight. Change LoopAnim to 1 and the other three fields to 0.

Check your changes against the existing record for Ice Bolt to confirm they match in the specific fields
affected. Then save your work in missiles.txt.

Figure 34 - Teeth in Skills.txt (versions 1.09d/d)

Figure 35 - Teeth in Skills.txt (version 1.10)

Open skills.txt next and find the row for the Teeth skill. Scroll right until the elemental damage fields are
visible, as shown above. Teeth is damage type magic but Ice Bolt is magic type cold, so change the Etype
field to cold. The other fields shown here control the damage, which we will not change this time.

The Elen fields control the duration of the skill effect. The basic unit of time in Diablo II is the frame
rate. There are 25 and only 25 frames per second, this is hard-coded into the game. Cold is one of the
damage types that is time-dependent, so we need some value other than 0 in the Elen field. For two
seconds of cold duration, put 50 in the Elen field. The other three fields control the duration per skill
level. We will leave these three fields at 0.

Save your changes in skills.txt. Now we will change the strings associated with the newly-altered skill.

The Beginner’s Guide, v1.4 Page 27 of 34

In the Table Editor, open string.tbl and use the search function (binoculars icon) to find instances of
“teeth” in the file. The first instance is at string key strSkill28, which is a generic listing of the missile
type. Change this value to “bolts”. The next instance is at the head of the Teeth Skill key block, shown
below.

Figure 36 - Teeth Skill String Block

The first key of this block, SkillName67, is the display name for the skill. You may want to see “Ice
Bolts” or “Ice Teeth” or something completely different; this is the record to change. Below that are two
records for describing the new skill. Skillsd67 is the short description, it currently reads “fires barbed
teeth”. The next record is the long description, shown above. Edit these two fields to provide suitable
descriptions, such as “fires ice bolts” for the short form and “fires a sleeting barrage of deadly frigid
shards” for the long form. The last record of the skill block is the alternate name, skillan67. In most
cases the alternate name is the same as the display name, so change this copy from “Teeth” to whatever
you have in the skillname67 record.

Save these changes to string.tbl. Generate bin files for missiles.txt and skills.txt, and insert all five files
into patch_D2.mpq. Now play your Necromancer and see how the skill has changed. You should now
see cold damage against your foes. When you highlight your skill, the name and description changes
should read as you entered them in string.tbl.

Many skills have information which is linked through code to the values in skills.txt. A more advanced
technique where you swap skills between classes requires DLL editing. But this exercise shows you can
change the behavior of skills considerably without knowing anything about graphics or assembly
language.

The Beginner’s Guide, v1.4 Page 28 of 34

Exercise #10 – New Auras (1.10x only)
So far we have discussed changes that can be made in either 1.09x or 1.10x versions. This exercise and
the next are for version 1.10x only; they use files and capabilities that are not available in 1.09x.

The easiest way to create a new skill is to clone an existing one. Open up states.txt and find ‘meditation’
in the states field. It should be ID number 48. Copy this entire line, and paste it at the bottom of states.txt.
You should now have two lines of meditation. Rename the bottom one (the one you just pasted) to
‘auraregen’, and give it any unused ID number in states.txt, in this case 181. (We use ‘auraregen’ for the
state name so it isn’t confused with ‘regen’ from properties.txt.) The figure below shows only those
fields we will use for this exercise.

Figure 37 - Changes to States.txt

We want this to take immediate affect, so leave the 1 under the immed field alone. We are now done with
states.txt, but if you want to have a different overlay for this aura, put the name of an overlay animation
file in the field ‘overlay1’ and the field ‘overlay2’ (or as in this case, leave the second overlay field
blank). Save states.txt.

Next open skills.txt. Find Meditation, its skill ID should be 120. Copy this line, and paste it at the bottom.
Change the skill's name to ‘RegenHPMana’. Change the ID to 357 so it doesnt interfere with any of the
other skills. Under the skilldesc column, put ‘auraregen’ there.

Still in skills.txt, skip over to the aurastate and auratargetstate fields. Under both of them, put ‘auraregen’.
Now skip over to the aurastat1 field. It should say ‘manarecoverybonus’ there. Next to it, in the
aurastatcalc1 field, it should say ‘ln34’. This is fine, since it is telling the game to recover our mana faster,
which is half of the regeneration we want. Now go to the aurastat2 and aurastatcalc2 fields. Right now,
those fields have ‘hitpoints’ and ‘skill('Prayer'.edns)’, which are the codes for the synergy bonus
Meditation receives. We won’t want synergies, so we will use those fields for the life recovery power. In
aurastat2 we will put ‘hpregen’ and in aurastatcalc2 we put ‘ln12’. We will use the radius and radius
increase per skill level as the same numbers for hit points and points per skill level. The Guide does not
cover the various types of calculations, but the numbers in the formulas used here are references to Param
fields in Skills.txt.

Figure 38 - Changes to Skills.txt

Now, still being in skills.txt, go to the right and find the reqlevel field. For testing purposes, put ‘1’ in this
field. Remove any required skills listed in the reqskill1–reqskill3 fields, those list prerequisite skills
needed in order to earn this skill. We are now done with skills.txt, so save it and exit.

We are now in the last database file, skilldesc.txt. Copy the line for Meditation, and paste it again at the
end of skilldesc.txt. We will be modifying this line extensively! Change the name of the skilldesc to
'RegenHPMana', this must exactly match what was entered in the skilldesc field of Skills.txt. Now we
will position the skill icon on the Combat Skills page (primarily for distinction) and place it in an unused
spot. Under the SkillPage column, put a 3 there. Under the SkillRow column, put a 1. And finally, under
the SkillColumn column, put a 2.

Figure 39 – Placing Skill Icon and Adding Skill Text to Skilldesc.txt

The Beginner’s Guide, v1.4 Page 29 of 34

Now we need some text in the skill description to tell us what we have. As we saw in the previous
exercise with Teeth, all skills have a common format: skill name, short description, long description and
alternate name. For the new skill we will need to add the string records for Skillname282, skillsd282,
skillld282 and skillan282. Open up a .tbl file (string.tbl is a good choice) and add the records shown as
follows. It is common for Skillname and skillan to be the same.

Skillname282 Regenerate All
skillsd282 Regenerates HP and Mana
skillld282 gives life regeneration for you and your party

when active, aura increases mana recovery and
skillan282 Regenerate All

Table 7 – New Skill Descriptions

This takes care of the general skill text, but what about current level, next level, and the leftover synergy
description from when we copied Meditation? It isn’t easy to work on these, but here is the general
format. There are three different description sections (desc, dsc2, and dsc3) which control the following
parts of the skill description:

desc* -> level dependent description (bottom to top, six lines maximum)

dsc2* -> level independent description (bottom to top, four lines maximum)

dsc3* -> synergy descriptions (top to bottom, seven lines maximum)

Within each section, there are parameters for up to seven lines of description. The level dependent and
level independent descriptions appear in reverse order (bottom to top), while synergy descriptions appear
from top to bottom. Each line consists of a type (descline, dsc2line, dsc3line), one or two text references,
and then one or two calculations. The type is a format string, from a list of predefined formats (refer to
the file guide for the list, it isn’t covered here). The text references are string keys for new and existing
strings in the tbl files. The calculations are the same codes we used in Skills.txt to calculate skill effects
based on the contents of Param fields.

For our new skill, we find the following descritions already in place, because we copied Meditation:

 type text a text b calc a calc b
descline1 4 StrSkill50 skill('Prayer'.edmn)
descline2 2 StrSkill88 StrSkill23 ln34
descline3 19 StrSkill18 ln12
dsc2line1 67 skillname99 Healplev2 skill('Prayer'.edmn)
dsc3line1 40 Sksyn skillname120 2
dsc3line2 18 skillname99

Table 8 - More Skill Descriptions for Meditation

The Beginner’s Guide, v1.4 Page 30 of 34

In summary, descline1 is the effects per skill level of a synergy with Prayer, descline2 is the mana
regeneration property of the skill, descline3 is the radius of effect for the aura. Then we have dscline2 for
the invariant effect of the synergy. Finally dsc3line1 and dsc3line2 give us the listing at the bottom of the
skill display that shows what the synergy is, although in this case no quantitative information appears.

Now we get to figure out what we want the skill description to say. Let’s start by eliminating all synergy
information, which we will do by clearing the contents of the fields associated with descline1 (except
text a), dsc2line1, dsc3line1 and dsc3line2:

 type text a text b calc a calc b
descline1 StrSkill50
descline2 2 StrSkill88 StrSkill23 ln34
descline3 19 StrSkill18 ln12
dsc2line1
dsc3line1
dsc3line2

Table 9 - Skill Description Without Synergy References

What do we have left? In descline1 we kept StrSkill50, which is “Heals: ”. In descline2, we have a Type
2 description, which means “form a string of [text a] + (calc a) + [text b]”. Looking up the two string
keys in String.tbl, we see StrSkill88 = “Mana Recovery Rate: ” and StrSkill23 = “ percent”. Then in
descline3 we have Type 19, which means “form a string of [text a] + [calc a) + “ yards”. And finally
StrSkill18 = “Radius: ”.

Now we want a string for hit points and a reference to the appropriate Param fields in Skills.txt. We will
use the same format as already exists for mana, and for the second string we will reference StrSkill108
from String.tbl, which is “ points”. We won’t use the remaining rows in our worksheet.

 type text a text b calc a calc b
descline1 2 StrSkill50 StrSkill108 ln12
descline2 2 StrSkill88 StrSkill23 ln34
descline3 19 StrSkill18 ln12

Table 10 – Completed Skill Description for the New Skill

Figure 40 – Changing the Level Variant Description to show Healing Effect

Enter these new values into the fields of Skilldesc.txt as shown above. Be sure you clear everything in
fields shown in the last two figures for dsc2line1, dsc3line1 and dssc3line2. Save Skilldesc.txt, open a
game and check your results!

Figure 41 - Removing All References to Synergy in the Level Invariant Description

Figure 42 - Removing All References to Synergy in the Synergies Description

The Beginner’s Guide, v1.4 Page 31 of 34

Exercise #11 – Stat-Altering Potions (1.10x only)
In this last exercise we will look at a technique for making potions that behave somewhat like shrines; the
character will have a temporary change in a stat after consuming one. As in the previous exercise, this
change uses features that are new with Patch 1.10. However, the technique of adding new items to
treasure classes discussed at the end of the exercise works for 1.09x as well, and you should review and
experiment with it often.

First, open misc.txt. Copy the thawing potion (row #10) to a new record at the bottom of the table.
Rename it to Fire Resist Potion (or similar) in both the Name and *Name fields. Change the code and
namestr fields to ‘frp’. Then scroll over to the State field and change it to ‘potion_fire_res.’ Remove the
contents of cstate1 and cstate2 (do not leave spaces). In the Len field specify a length in frames that the
effect will last, remembering there are 25 frames per second.

Figure 43 - A new Potion of Fire Resistance

 Change the Stat1 field to ‘fireresist’ and the calc1 field to 30 for +30% additional resistance. We’ll add a
bit more to this potion: in Stat2, change to ‘maxfireresist’ and put 5 in the calc2 field for *5% to
maximum fire resistance. Fiunally, in the spelldesc field put 1 and in spelldescstr the string you'll use in
the table file: PotionFireRes. Save and close misc.txt.

Figure 44 – Effects of the new potion

Now open states.txt and add a new record. In the state field, put ‘potion_fire_res’ and change the ID to the
next number in the list. Move to the rfblue field and enter 1, this will change value in the resist fire field
in your character stat panel to blue while the potion effect lasts. Now, scroll over to the Stat column, and
input "fireresist". and finally in the eol column, input 0. It is important to have a visual effect for any stat
boost, so the player knows when the boost is working. This is especially true of stats that do not show up
on the character sheet, such as gold find and resistance to magic.

Now you have a potion that will add however much fire resistance you want, and increase your maximum
fire resistance. But it has no visual representation, other than the change in the stat on the character sheet.
We will give this potion the same aura as the Paladin’s Resist Fire skill. Go to the overlay1 field and
enter ‘aura_resistfire’, then to the Castoverlay field and enter ‘cast_resistfire’, and finally go to the
onsound field and enter ‘paladin_aura_resistfire’. Save and close States.txt.

Figure 45 – Visual Effects While the Potion Is Working

But we still need some display strings. Using Darkstorm’s String Table Editor on string.tbl, we add a
string record using the ‘+’ key as before, enter ‘frp’ for the key and ‘Fire Resistance Potion’ for the
description. Then add another record with key ‘PotionFireRes’ and enter a two-line description in this
order, ‘+X% to Maximum Fire Resistance’, ‘+Y% to Fire Resistance’ (where X is the number you
entered for maximum fire resistance, and Y is the number you entered for the addition to fire resistance).

The Beginner’s Guide, v1.4 Page 32 of 34

Figure 46 - Two-Line Description for Fire Resistance Potion

If you run a game in -direct -txt right now, you will find these potions will be sold by vendors that can sell
thawing potions, and for 25 gold only. You must go back to Misc.txt and edit the price and availability to
your preference. We will change the cost field to 500 and remove all references from the vendor fields.
Akara is shown here for example (simply clear AkaraMin and AkaraMax), but you must clear all vendors
that can sell the new potions if you don’t want them available in town.

Figure 47 - Adjusting Price and Availability

Now that we have removed the potions from vendors, we need to enable them to drop from monsters and
objects. This is similar to the Quill Rat Test, except we will choose a more permanent location. Load up
TreasureClassEx.txt and find the records near the top labeled Potion1 through Potion6 in the Treasure
Class field, those are generic potion drops. We will add our new potion to each of the six drops, using the
next available slot as shown below.

Figure 48 - Adding a New Item to an Existing Treasure Class

This last technique is very important, as you will use it frequently to get new items dropped by monsters
and objects. As said before, TreasureClassEx.txt is a very complex file, and the way it works is beyond
the scope of this Guide. But the basic idea is each record represents a possible treasure drop, and the
fields are what can be included in the drop. Up to ten items may be listed, each one with a probability of
being selected. The Picks field is how many attempts are made from the drop record, if more than 1 then
you may see up to six items in the drop. Each probability is the chance out of the total probabilities of the
ten item records and the No Drops field (not shown and not counted if blank). For example, Potion1 after
we edit it has 12+4+5+4+1+4+1, the last being our new item. So the total is 31 and we have a 1 in 31
chance of dropping our new potion if the Potion1 record is chosen for a treasure drop.

Note:

You can create any type of potion you want using modifiers from itemstatcosts.txt. But if you drink a
second potion of the same type before the effect of the first potion wears off, the second potion will
cancel the first and not add its effect.

The Beginner’s Guide, v1.4 Page 33 of 34

Conclusion
The staff at the Phrozen Keep hope you find this guide a useful introduction to the world of Diablo II mod
making. There are many changes to the game possible through txt file editing alone, the exercises
included here are merely the tip of a big iceberg. Use the other tutorials and file resources to learn more
about the files. And remember the Phrozen Keep Forums are always open for business, should you have
questions that aren’t answered in these sources.

Here is a recap of some important tips for making effective and functional mods.

1. Always make incremental changes. The fewer alterations between tests, the faster you will find
out what went wrong if something isn’t working correctly.

2. If you add new lines to a txt file database or a string table, always add lines at the end of the file.
Never insert a line, and never remove a line that you didn’t add yourself. If you don’t want
something to display in a string table, just blank out the field on the right. There are some txt
files which cannot be expanded, but of the files mentioned in this guide only LvlMaze is
restricted in this way.

3. Use the Quill Rat Test to see if items spawn the way they should. If you are testing high-level
items, and reducing the level and levelreq fields for testing purposes is not enough, use the first
Quill Rat (H) line in TreasureClassEx.txt and test in Hell difficulty with a (generated) high-level
test character.

4. Use existing similar records to see how a new record in any txt file should be organized.

5. If you crash in the game, there are two ways you can get information about what went wrong.
The first way is the Assertion popup, as shown below. This message is usually very cryptic, but
if you ask about it on the forum, somebody can help you better if you can describe the error using
the information in the popup. The messages are easier to retrieve if you run the game windowed.
Similar to -direct -txt, run the game with the -w switch for windowed mode.

Another location for finding error messages is the debug file produced each time you run the
game. This file is located in the default directory, and has a name like D2020508.txt, where the
name is D2 followed by two-digit year, two-digit month and two-digit day, it is the day you ran
that session. Open this file, and scroll up from the end of the file until you see lines similar to

18:38:26.480 ***** UNHANDLED EXCEPTION: ACCESS_VIOLATION (c0000005)
18:38:26.480 Fault address: 6FD83438 01:00042438 F:\DIABLO II\D2COMMON.DLL

If you get an Assertion popup, the information will also appear in the debug file. And this source
is the only way to find out more about the Unhandled Exception, which is a generic Windows
error usually caused by Diablo II trying to access restricted memory locations.

6. Check the Phrozen Keep for the latest file guides and tutorials as you expand your knowledge.
This Guide only touches the surface of what is possible.

7. Above all else, have fun!

The Beginner’s Guide, v1.4 Page 34 of 34

