
1 / 54

Extracting Diablo II Animations

By Paul Siramy

Copyrights

BATTLE.NET®
©1996 - 2003 Blizzard Entertainment. All rights reserved. Battle.net and Blizzard Entertainment are
trademarks or registered trademarks of Blizzard Entertainment in the U.S. and/or other countries.

BLIZZARD ENTERTAINMENT®
Blizzard Entertainment is a trademark or registered trademark of Blizzard Entertainment in the U.S.
and/or other countries. All rights reserved.

DIABLO® II
©2000 Blizzard Entertainment. All rights reserved. Diablo and Blizzard Entertainment are
trademarks or registered trademarks of Blizzard Entertainment in the U.S. and/or other countries.

DIABLO® II - Lord of Destruction
©2001 Blizzard Entertainment. All rights reserved. Lord of Destruction is a trademark and Diablo
and Blizzard Entertainment are trademarks or registered trademarks of Blizzard Entertainment in
the U.S. and/or other countries.

Credits and Thanks (in no particularly order)

TeLAMoN CV5, CV5 plugins, DCC thinking

Bilian Belchev Doc on DCC format, helped me a LOT, and of course CVDCC.DLL

Alkalund & Myhrginoc First researches about the DCC / COF / D2 files formats

Peter Hu (aka Isolde) Various infos on .D2 file formats. AWESOME work on the patch 1.10,

thanks you so much for all the new possibilities for us, mod-makers!

Sir_General & Jarulf Infos about Animation Speed

Sloan Roy (SVR) Great and very useful DRTester, I just love it

Phrozen Keep Thanks to all the staff and members of that great community for their

kindness and various helps

Special Greeting

Since this tutorial deals essentially with D2 animations, I would want to greet all the artists of
Diablo II for their impressive amount of work on that game. Great job!

2 / 54

Table of Content

Overview .. 3

1. Get the Tools... 4

1.1. DRTester .. 4
1.2. Merge_dcc .. 4
1.3. Animdata_edit... 4

2. Exercise 1: a Player Character ... 5

2.1. Overview .. 5
2.2. Equipments that modify the animations .. 5
2.3. Finding the correct files .. 6

2.3.1. Necessary items informations..7
2.3.2. Retrieving Unique items datas ...8

2.3.2.1. Vampire Gaze .. 8
2.3.2.2. Baranar’s Star.. 8

2.3.3. Retrieving Set item datas..9
2.3.4. Retrieving other items datas ... 10

2.4. Components of Animations...11
2.5. Weapon’s Class ..12
2.6. Token and Path of the animations ...13
2.7. Player Character’s Mode...13
2.8. Types of Animation’s files...17
2.9. Naming convention of Animation’s files ..19

2.9.1. COF ... 19
2.9.2. DCC ... 19
2.9.3. Directories .. 20

2.10. Finding the good DCC of the Armor..21
2.11. Comparing the 2 versions of DRTester..22
2.12. Working with DRTester ..24
2.13. Extracting the Barbarian animation files28
2.14. Configuring Merge_dcc for the Barbarian30
2.15. Making the shadow of 1 frame ..32
2.16. Finding the Barbarian Animation Speed ..36
2.17. Creating new frames with transparency..38
2.18. Creating the animated GIF of the Barbarian39

3. Exercise 2: a Fallen ... 42
3.1. Overview ...42
3.2. Animation Token...42

3.2.1. Animation Token in 1.09d ... 42
3.2.2. Animation Token in 1.10 ... 42

3.3. Finding the composition of the Carver ..43
3.4. Making the Carver frames with Merge_dcc......................................44
3.5. Making the animated GIF ...44

4. Exercise 3: the Countess ... 45
4.1. Overview ...45
4.2. Finding the Countess color variations ...45

5. Exercise 4: Arcane Teleport Pad .. 47

5.1. Overview ...47
5.2. Get a necessary preview ..47
5.3. Get all layers frames ...48
5.4. Handle layers in Paint Shop Pro...50
5.5. Finding Layers Blending Mode...53
5.6. Animation Speed of Objects..54

3 / 54

Overview

This tutorial will explain you the complete process that is required for making an animated GIF from
an animation of the game Diablo II, and its expansion Lord of Destruction. With the current tools
we have at our disposal today, this is the only way to transform a multi-component Monster into a
torso-only animation, thus helping the creation of a ‘new’ Monster in the game with great ease.

It’ll explain in very deep details how Animations are made in the game, so be prepared for lots of
stuff that you didn’t ask for ;) Therefore it’ll makes the things more understandable if you want to
make your own animations as they were originally made (anyone concerned?), or just if you want to
enhanced them maybe. All this knowledge is not needed for the purpose of just making animated
GIF, as you can achieve this result by trials and errors, but knowing how it is all working sure makes
the things more accurate and easy.

I’ll take several examples: Player Character, Monster, and Object, thus covering all major cases, if
not all:

• I’ll first take one of my Characters as an example, a dual-weapons Barbarian, which was
equipped especially for this tutorial. This exercise will be the longest (yep, very long), since
it’ll explain all the concepts that are used for animations in D2, like components of
animations, colormaps, how to find the correct informations in the TXT files, all the complex
stuff about 1 hand / 2 hands / 2 weapons modes, why Tyrael and some other animations
can’t be converted easily … and the usage of some Tools.

• In the second exercise we’ll extract a Fallen, because Monsters are a little different than

Player Characters.

• Right after, we’ll take the example of the Countess, to understand her color system in the
patch 1.10.

• And finally, in the third exercise we’ll take 1 Object, the Arcane Teleport Pad, for its

alpha-blended layers problems.

Required knowledge:

I’ll consider that you already know these bases of Mod Making:

• Extracting files from MPQ
• Reading TXT files in Microsoft Excel or D2Excel (we won’t edit anything tough)

I’ll also assume that you know how to use these programs, at least a minimum (no need to be an
expert), as I won’t repeat what’s in their respective documentation (but sometimes I’ll take the time
to explain some things step-by-step, especially for DRTester):

• DRTester
• Merge_dcc
• Animdata_edit
• Paint Shop Pro - version 6.00
• Animation Shop 2 - version 2.00

4 / 54

1. GET THE TOOLS

1.1. DRTester

We’ll first take an excellent Tool, that’s DRTester by Sloan Roy (SVR), since this wonderful program
allow you to browse an MPQ, test animations (COF, DCC) in real-time, test them with different
colormaps, extract the file you’re viewing and the related ones simultaneously. It also allows you to
view DT1 and even DS1 (maps), among other good things! This program will be of an inestimable
value for us. But the problem is that there are 2 versions of that program, each one having its good
and bad points. I’ll compare them later.

You can get the 1st version (28 Nov 2002) at:
http://files.d2mods.com/pafiledb.php?action=file&id=171 (49.9 kB)

And you can grab the 2nd version (01 Dec 2002) at:
http://files.d2mods.com/pafiledb.php?action=file&id=887 (50.3 kB)

None of these 2 versions require any additional files.

Note: you can get updated version of DRTester directly on the site of his creator
(http://home.stx.rr.com/svr), but then this document will be slightly different of what you’ll have.
For instance the version available on this site can make a GIF from the animation settings you have
set when viewing a COF. Don’t hesitate to upgrade tough

1.2. Merge_dcc

This is a program I have made that is especially designed to transform a multi-part animation into a
torso-only animation, also allowing you to apply colormaps on each component. I’m taking this
moment to thanks again Bilian Belchev for having help me a LOT to make my DCC decoder

You can get this Tool at:
http://files.d2mods.com/pafiledb.php?action=file&id=173 (113 kB)

And you also need the Allegro DLL, which can be retrieved at:
http://files.d2mods.com/pafiledb.php?action=file&id=161 (226 kB).

Just place that DLL in the directory of Merge_dcc and the program will run fine.

1.3. Animdata_edit

This is another program I have made. This one is for editing the file Data\Global\Animdata.d2. It
extracts its datas in a .txt, allowing you to easily edit them with MS-Excel or D2Excel, and then it
encodes them back.

You can get this Tool at:
http://files.d2mods.com/pafiledb.php?action=file&id=876 (19 kB)

It doesn’t require any additional files.

5 / 54

2. EXERCISE 1: A PLAYER CHARACTER

2.1. Overview

Here’s a quick glance of the Animation we’ll recreate. It’s not particularly beautiful, but it’s using
items that have some tints on them, so it’ll be a very good exercise. I have chosen a Barbarian
because the Dual-Weapon ability is an exception among the Player Characters animations, so this
will make it also for a good exercise.

My Barbarian, equipped
especially for us

2.2. Equipments that modify the animations

As you have certainly noticed before, there are only 4 items that your Player is wearing that are
affecting the animation of the player during the game. They are the Left and Right hands, the
Armor, and the Helm:

The only 4 interesting items for us

The Amulet, the 2 Rings, the Belt, the Gaunt, the Boots, the Alternative weapon(s) and / or shield,
and all the other items you have in your Inventory / Horadric Cube / Private Stash / Mercenary don’t
affect the animation of your player. These 4 items are the keys of the Player animation.

NOTE: The patch 1.10 has introduced the possibility for the Set Items to have overlays under the
Player animation, but we won’t take that effect into consideration in this document.

6 / 54

2.3. Finding the correct files

Now we need to know exactly which animation files we’ll use. There can be 2 cases: either you know
the items the Player have, or not. In our case we know, so it’ll make things much more accurate. In
the case of a 1.09 Monster (like Blood Raven), we’d have to find them by trials and errors, with
several screenshots. But just let’s see what my Barbarian have.

Socketed Magical Sword

By knowing the type of the item (here
“Champion Sword”) we’ll be able to find the
base graphic file, and by knowing the prefixes,
suffixes, and socketed items, we’ll be able to
know the color effect to apply on the base
image, if any.

Unique Helm

Unique items usually have a color effect,
which is the case here. We’ll learn how to
know exactly which one.

Unique Weapon

Another interesting Unique item with a color
effect, but this time it’s a Weapon.

Set Item Armor

Set item, like the Unique items, usually have a
color effect, which is the case here. We’ll learn
how to retrieve this one too.

7 / 54

2.3.1. Necessary items informations

So, what do we really need to know about these items? For Unique items we just need to know the
name as we’ll be able to retrieve all the other informations from there. That's the same for the Set
items. For the other items, we need to know the name, the gems that are socketed into (if any), the
prefixes and suffixes, and lastly the list of its properties, since items can get a color effect from
there too. In our case it’s simple:

• Helm
o Quality = Unique Item
o Name = “Vampire Gaze”

• Left Hand
o Quality = Unique Item
o Name = “Baranar’s Star”

• Armor
o Quality = Set Item
o Name = “Sigon’s Shelter”

• Right Hand
o Quality = regular Item (not a Unique nor a Set item)
o Type = Champion Sword
o Socketed gems = Amn
o Affixes = Cruel
o Properties = Enhanced Damage, Life steal

8 / 54

2.3.2. Retrieving Unique items datas

Unique items are defined in Data\Global\Excel\UniqueItems.txt. As always, take the last
version you have: check first in patch_d2.mpq, else in d2exp.mpq, else in d2data.mpq. I’ll take
the one in patch_d2.mpq, version 1.09 D.

2.3.2.1. Vampire Gaze

It’s the line 211 in Microsoft Excel, column name having Vampiregaze (without spaces). The
interesting datas for us are:

• code = xh9
• type = Grin Helm (not really needed, but just for safety later)
• transform = 1
• transformcolor = 12

Now, let’s take Data\Global\Excel\Armor.txt. A search for xh9 into the code column give us
the line 91 in Excel, name = Grin Helm. This is the type we have read in UniqueItems.txt so no
errors, that’s this one. The interesting datas for us are:

• alternategfx = bhm
• Transform = 2

The Transform value in Armor.txt set to 2 tell us the animation will use the colormap
Data\Global\Items\Palette\grey2.dat found in d2data.mpq when a color effect needs to be made
on this object. The transform value in UniqueItems.txt set to 1 tell us this animation will use it,
and therefore the transformcolor 12 tell us it’ll use the tint Crystal Green.

To understand exactly how these colors effects are made for Unique items, Set items, and Gems
color effects, read a doc on that subject at: http://d2mods.com/colormaps.php

2.3.2.2. Baranar’s Star

It’s the line 259 in Microsoft Excel, name = Baranar's Star. The interesting datas are:

• code = 7mt
• type = Devil Star
• transform = 1
• transformcolor = 7

Now, let’s take Data\Global\Excel\Weapons.txt. A search for 7mt into the code column give
us the line 219 in Excel, name = Devil Star. The interesting datas are:

• alternategfx = mac
• wclass = 1hs
• Transform = 1

The Transform value in Weapons.txt set to 1 tells us the animation will use the colormap
Data\Global\Items\Palette\grey.dat found in d2data.mpq. The transform value in
UniqueItems.txt set to 1 tell us this animation will use it, and therefore the transformcolor 7
tell us it’ll use the tint Light Red.

Just next to the wclass column stand the 2handedwclass column. For the Mace the value is
1hs for the 2 columns.

9 / 54

2.3.3. Retrieving Set item datas

Set items are defined in Data\Global\Excel\SetItems.txt. I’ll take the one in patch_d2.mpq,
version 1.09 D.

The Sigon Set collection is at the line 11 in Excel, column name = Sigon's Complete Steel. The
Sigon’s Shelter is at column AQ (Item2 Suffix). The interesting datas are:

• transform = 1
• transformcolor = 0
• Item 2 = gth

Now, let’s take Data\Global\Excel\Armor.txt. A search for gth into the code column give us the
line 20 in Excel, name = Gothic Plate. The interesting datas are:

• alternategfx = gth
• Transform = 2

The Transform value in Armor.txt set to 2 tell us the animation will use the colormap
Data\Global\Items\Palette\grey2.dat found in d2data.mpq when a color effect needs to be made on
this object. The transform value in SetItems.txt set to 1 tell us this animation will use it, and
therefore the transformcolor 0 tell us it’ll use the tint White.

Patch 1.10

This patch has brought modifications in UniqueItems.txt and SetItems.txt. Here are the
modifications that concern both files:

 The column transform don’t exists anymore

 The column transformcolor is split into 2 columns: chrtransform and invtransform: the
first for the Player Character animation color, the other for the item inventory version.

 Both chrtransform and chrtransform are no longer index but color code, from
Data\Global\Excel\Colors.txt.

 Colors of some Unique Items (and some Set Items as well) have changed from 1.09. In this
tutorial, I’m referring to the colors in the version 1.09 D.

10 / 54

2.3.4. Retrieving other items datas

They’re using both Armor.txt and Weapons.txt. The Champion Sword is at the line 235 with Excel
in Weapons.txt. The interesting datas are:

• alternategfx = clm
• wclass = 1hs
• Transform = 1

The Transform = 1 tell us the animation will use the colormap Data\Global\Items\Palette\grey.dat
found in d2data.mpq when a color effect needs to be made on this object (which is the case here,
since the Sword have an Amn rune in it).

To known the tint that will be use, let’s check Data\Global\Excel\Gems.txt. The Amn rune is at
line 48 in Excel, and the transform column has an 18 there, so it’ll be the tint Dark Purple…

Hey no, wait! The doc about the colors effects for Uniques, Set and Gems say:

Runes can't *have* nor *make* any tint effect

So in fact, since it’s a *rune* that’s in the 1st socket, there is no colors effect on that Sword. If it
was a Perfect Saphire, the line in Excel would have been the 11th, and therefore the tint would
have been Crystal Blue. But since it’s a rune, our Sword will sadly stay normal… Well, it’ll make our
job easier. But we’ll still see later how to apply such a tint.

Note: of course I assume that we’re working on a un-modified version of Lod, else as the doc on
colors effects indicate, it’s possible to have tints with Runes too, but it’s not the case here.

But does the Claymore really doesn’t have any color effect? In fact it does have one in our case.
Not because of the Rune, but because of the Cruel Prefix, which makes it turn into a Black sword.
That’s why I said we needed the list of the Properties for the regular items.

There are 3 files that have the possibility to have properties that modify the color of an object. They
are all in Data\Global\Excel and are MagicPrefix.txt, MagicSuffix.txt and AutoMagic.txt. I
won’t go into details tough, so I’ll just say that they all have the transform and transformcolor
columns, and that they works the same way as in weapons.txt, armor.txt and misc.txt.

The Cruel Prefix is in MagicPrefix.txt. It has the transform column set to 1, therefore when it is
spawned on an item it changes its colors. The transformcolor set to blac tell us it’ll be the tint Black
(just check Data\Global\Excel\colors.txt) and therefore the index of this tint is 3 (we count the
lines where the codes are, starting from 0, not 1).

Now, in Weapons.txt, just next to the wclass column, stand the 2handedwclass column. For the
Champion Sword, we can see that the 2 columns are different. It’s 1hs for the wclass column,
while it’s 2hs for the 2handedwclass. Let’s open the file Data\Global\Excel\WeaponClass.txt:

Weapon Class Code
None
Hand To Hand hth
Bow bow
1 Hand Swing 1hs
1 Hand Thrust 1ht
Staff stf
2 Hand Swing 2hs
2 Hand Thrust 2ht
Crossbow xbw
Left Jab Right Swing 1js
Left Jab Right Thrust 1jt
Left Swing Right Swing 1ss
Left Swing Right Thrust 1st
One Hand-to-Hand ht1
Two Hand-to-Hand ht2

So, the Champion Sword has both the 1 Hand
Swing and the 2 Hand Swing animations.

Finding what each code really does can be hard
the first time you see them. So we’ll first see
how animations are made, and then only after
will we understand what’s the logic beyond
these modes.

Now is the good time to let the deep analyze of
the animations starts…

11 / 54

2.4. Components of Animations

As you may already know, the animations in Diablo II are split into several parts. When you are
equipping another helm, just the head of the animation change. Same for when you’re equipping
another weapon, only the weapon part of the animation change. That’s because the Player is divided
into several parts. Let’s open Data\Global\Excel\Composit.txt:

Name Token
Head HD
Torso TR
Legs LG
RightArm RA
LeftArm LA
RightHand RH
LeftHand LH
Shield SH
Special1 S1
Special2 S2
Special3 S3
Special4 S4
Special5 S5
Special6 S6
Special7 S7
Special8 S8

Here you can see all the logical division of the animations in
Diablo II, not only for the Players but also for Monsters and
Objects. They are Layers: the game superposes them to
recreate the Player animation. It’s exactly like in the making
of cartoons. By replacing the head layer by another head,
the final animation is different, without having to change all.

These layers are ordered. When drawing an animation of a
Player in a given direction, for a given frame, a table tells in
what order to draw them. When the Player is facing West,
you first see his Shield, and the rest of the body is behind.
But when facing East, the Shield is now the one that is
behind.

Here’s an example. All of those layers are combined to make the final Player image:

S1

HD

S2

RH

TR

SH

Final result

RA

LG

LA

If you look closely, you’ll see that it’s not just a simple “crop” division: some layers intersect each
other’s, like the RA layer which is overlapping with the layers S1, RH and TR. That’s why the order
to draw them is important: you don’t want the RA layer to be draw on top of the S1, do you?

12 / 54

2.5. Weapon’s Class

Some weapons must be used with 2 hands, others can be wielded in both 1 and 2 hands, and
another weapons in 1 hand only. In this last case the 2nd hand can be a shield or another weapon.
The 1-hand weapons can be of the Swing type (sword) or Throw (javelin). That was just a very
simple overview ;)

The key to understand the Weapon’s Class is to think about the entire Body Position of the Player,
and especially his Arms. The Body does not move the same way when fighting with a Bow than
when fighting with a Spear for instance. There is one Weapon’s Class for each possible case covered
by the game. In the precedent example, the RH layer just had the Sword draw onto it, not the
Arms. If the Player now equipped himself with an Axe, only the RH layer will change, the Arms and
the rest of the Body will stay exactly the same:

RH

Final result

As you see, only the RH layer changed, and it
doesn’t have any Arms draw onto it, but the final
image is still ok. That means that the precedent
Sword, when equipped in 1 hand, and this Axe are
using the same Weapon’s Class: they are
compatible Weapon’s Alternative of the same Main
Animation.

Here are examples and descriptions for each possible Weapon’s Class of the game:

2HT

STF

2HS

BOW

XBW

HT1

HT2

1HT

1HS

HTH

1SS

1JT

1ST

1JS

2HT = “2 Hand Thrust” Spear
STF = “Staff” Staff, Large Axe, Maul, Pole arm
2HS = “2 Hand Swing” 2-Handed Sword
BOW = “Bow” Bow
XBW = “Crossbow” Crossbow
HT1 = “One Hand-to-Hand” Shield + Claws
HT2 = “”Two Hand-to-Hand” Claws + Claws
1HT = “1 Hand Thrust” Shield + (Throwing potion, Knife, Throwing Knife, Javelin)
1HS = “1 Hand Swing” Shield + (Axe, Wand, Club, Scepter, Mace, Hammer,
 Sword, Throwing Axe, Orb)
HTH = “Hand To Hand” Shield + no weapon
1SS = “Left Swing Right Swing” Left = 1HS, Right = 1HS
1JT = “Left Jab Right Thrust” Left = 1HT, Right = 1HT
1ST = “Left Swing Right Thrust” Left = 1HS, Right = 1HT
1JS = “Left Jab Right Swing” Left = 1HT, Right = 1HS

13 / 54

2.6. Token and Path of the animations

Here are some Base Paths of different type of animations:

• Data\Global\Chars for Player Characters (Amazon, Barbarian…)
• Data\Global\Missiles for Missiles (Arrow, Fireball…)
• Data\Global\Monsters for Monsters / NPC (Fallen, Duriel, Cain…)
• Data\Global\Objects for Objects (Torch, Chest, Shrine…)
• Data\Global\Overlays for Graphical Effects (Aura, Curse, Explosion…)

For the Player Characters, the animations are in d2char.mpq for the Classic game (Amazon,
Sorceress, Necromancer, Paladin, and Barbarian). For the Expansion (Druid, Assassin) they’re in
d2exp.mpq. Let’s open from d2exp.mpq the file Data\Global\Excel\PlrType.txt :

Name Token
Amazon AM
Sorceress SO
Necromancer NE
Paladin PA
Barbarian BA
Expansion
Druid DZ
Assassin AI

Our Barbarian is the BA Token. Therefore the Base Path
of all the animations of our Barbarian is
Data\Global\Chars\BA. Be aware tough that despite
you’ll find of course in d2char.mpq all the classic
Barbarian animations, there are more animations in
d2exp.mpq, like these Class-Only Helms that they can
wear in LoD now.

2.7. Player Character’s Mode

Players have several Modes, and each Mode has its own animations. Monsters and Objects have
other different Modes, but it’s the same logic. So, what are they for our Barbarian ? Let’s open the
file Data\Global\Excel\PlrMode.txt:

Name Token
Death DT
Neutral NU
Walk WL
Run RN
Get Hit GH
Town Neutral TN
Town Walk TW
Attack1 A1
Attack2 A2
Block BL
Cast SC
Throw TH
Kick KK
Skill1 S1
Skill2 S2
Skill3 S3
Skill4 S4
Dead DD
Sequence GH
Knock back GH

For the Barbarian animation that we’ll recreate, the
Character’s Mode is TN (Town Neutral), and not the NU
(Neutral). NU is the neutral mode when the Player is in
the Wilderness, while the TN neutral mode is used while
the Player is in Town.

The Sequence Mode is a special feature. There are some
Players / Monsters that have an animation for some
special cases which are coded as a sequence of frames
from several other animations. This is a way to recycle
images. But the problem for Mod Makers is that
sequences are hard coded in DLL, so making a new
Monster animation where such a sequence exists is hard
(except for the patch 1.10 where here the monsters
sequences are placed into MonSeq.txt).

14 / 54

Here are all the Modes of the Barbarian. Note that a Player don’t necessary have all the Modes that
are defined in PlrMode.txt, which is the case here since the Barbarian don’t have the Skill 2
animation type. For another Player Character the actual animations can vary, for instance the
Amazon have only Skill 1, and it’s not a Jumping attack but a Dodging ability.

DT

DD

TN

NU

SC

KK

A1

A2

TH S1

S3

S4

TW

WL

RN

BL

GH

DT = Death Dying animation.
DD = Dead The corpse
TN = Town Neutral Idle, lowering his guards in Town
NU = Neutral Idle, still on his guards out of Town
SC = Cast Casting a Skill
KK = Kick Kicking a Barrel for instance
A1 = Attack 1 Attack type 1, here Swinging by the side with a 1-hand sword
A2 = Attack 2 Attack type 2, here Swinging by the top with a 1-hand sword
TH = Throw Throwing axe, knife, javelin…
S1 = Skill 1 Skill type 1, here the Jumping Attack
S3 = Skill 3 Skill type 3, here a Swinging attack with the weapon in the Left hand
S4 = Skill 4 Skill type 4, here a Throwing attack with the weapon in the Left hand
TW = Town Walk Quiet walk in Town, lowering his guards
WL = Walk Precautious walk out of Town, still on his guards
RN = Run Running
BL = Block Blocking an attack with his shield
GH = Get Hit Getting hit by an attack, also used when taking a Knock back attack

Player’s Mode and Weapon’s Class are combined, so that’s making a lot of different animation types.
Almost all the Player’s Mode just above are of a 1HS (1-hand swing + Shield) Weapon’s Class, but
there are (almost) all the same Player’s mode with the other Weapon’s Class.

15 / 54

Here’s a table that present what are all the existing Barbarian’s animations type, given a Weapon’s Class and a Player’s Mode:

 2HT STF 2HS BOW XBW 1HT 1HS HTH 1SS 1JT 1ST 1JS

DT none none none none none none none

none none none none

DD none none none none none none none none none none none

TN

NU

SC

KK

A1

A2

none none

none

16 / 54

 2HT STF 2HS BOW XBW 1HT 1HS HTH 1SS 1JT 1ST 1JS

TH none none none none none

S1

S3 none none none none none none none none

S4 none none none none none none none none

T
W

W
L

RN

BL none none none none none

none none none none

GH

17 / 54

2.8. Types of Animation’s files

There are 6 types of files relatives to animations: DCC, COF, DAT, DC6, D2 and TXT.

• DCC are the most basic graphical part of an animation. For instance there’s a DCC for
the Claymore when used by the Barbarian while he’s in Neutral mode, using this sword
with the 2-handed Weapon’s Class (because it’s a sword that can be equipped by 1 or 2
hands by the Barbarian and in our example he don’t have a Shield). If that Barbarian
stay in his Neutral mode but now equipped himself with a Shield, the Claymore will be
used in another Weapon’s Class (1-handed), so it’ll be another DCC that will be used to
draw the Claymore. If now the Barbarian begins to walk, he’ll be in another Mode, so
it’ll be again another DCC that will be used to draw that Claymore.

Now, if he give that Claymore to a Paladin, even if that Paladin is in Neutral Mode, and
is using the Sword in a 2-handed Weapon’s Class (that Character don’t have the choice
anyway), it’ll be again another DCC that will be loaded by the game to draw that
Claymore, because it’s another Player Character:

For a given item, there is a DCC for all possible combinations of Player / Mode /
Weapon’s Class where that item can be used in the game.

Let’s find for our Claymore how many DCC exists:

o 7 Players
o Around 12 Modes per Player where a Sword can be used
o Between 1 and 5 Weapon’s Class

Well, we can’t really make a formula, as they’re so much special cases: Barbarian with
Dual-Weapons ability, Swords that can be equipped in 1-hand OR in 2-hand,
Barbarian’s Skill 3 that other Players don’t have… So, how many of them do really
exist? If we check the MPQ we’ll find 120 of them. That’s many animations for just 1
Claymore, isn’t it?

• COF are the files that controls how are assembled all Layers together to form the final

animation. When the Barbarian is in Neutral Mode, with the 1HS (1-Hand Swing)
Weapon’s Class, this is 1 COF. Wetter he’s using a 1-hand Claymore, or a 1-hand Axe,
or a Club, or a Hammer… it’s the same COF: the Barbarian’ s Body movements are
exactly the same for all of that weapons, because just that weapon graphical part
change. The COF control layers drawing order, and drawing a Sword instead of an Axe
when the moment to draw the weapon comes is not the purpose of the COF.

The COF is basically a table that indicates for all directions and for all frames, the order
of the layers to draw. In a given direction, for a given frame, the RH (Right Hand) Layer
is draw at a particularly moment, and it is the same wetter the Barbarian is using a
1-hand axe or a 1-hand sword. COF is a sort of the model of the animation, and each
one of the Layers of that COF usually have several DCC possibilities, thus making
diversity in the animations of the game.

For the Barbarian, remember all the images you have see in the 2 precedent pages.
There were 149 images, so you’ll find 149 COF in the MPQ for him. The 150th you can
find in the MPQ is in fact not useable, as there’s no DCC at all that are using it.

• DAT is a generic file extension that just means “DATA”. For the purpose of Animations,

the DAT files are colormaps, allowing an animation to be declined into several color set.
For instance, The Fallen Monster is Red. A colormap associated to this animation makes
it possible to have Blue, Green, and Brown Fallens. There are other DAT files,
specifically made for all the Player Characters.

18 / 54

• DC6 is the standard graphical file format used in Diablo II, not especially for animations
but usually for Title Screen, Icons, Item’s Graphics, Inventory Background, Skill Tab
Background… The DC6 files are in a very simple encoding format. It’s even simpler than
the RLE encoding format used by the PCX files. That’s because DC6 were made to only
handle one thing: the transparency. All the solid pixels are in a raw format, no
compression. There are just “jumps” of pixels encoded where transparency is found.
That makes DC6 very quick to be used at run-time. On the opposite, DCC are very
compressed, in a very complex format, and with a loss of quality (but this one is almost
unnoticeable).

An interesting thing to know about the DC6 and the DCC files, according to Bilian
Belchev documentation on the DCC format (see below), is that DCC can be considered
as compressed DC6, because the decoder of Diablo II when reading a DCC file, is not
“simply” decompressing it, it’s decoding it in the DC6 format. As a proof we can check
the directory Data\Global\Overlays, we’ll find 384 DCC (and 1 DC6, the usual
Mephisto exception), while in the directory Data\Global\uncompoverlays we’ll find
11 DC6 and no DCC at all (“uncomp” standing for “uncompressed”).

The DCC File Format Documentation by Bilian Belchev can be found at:
http://files.d2mods.com/pafiledb.php?action=file&id=253

Why talking about DC6 here? Because despite almost all of the animations files of
Player Characters / Monster / Objects / Missiles are in DCC format, there are some
exceptions, like Mephisto, Tyrael, Maggot Queen’s Death, Mephisto’s Hell Gate… It
doesn’t have any influence for DRTester, but it does have one for my Merge_dcc
program: for now it doesn’t handle DC6, just DCC, so the above exceptions can’t be
extracted… not easily at least.

• D2 is a file format specifically used for animations datas. In fact, there are 2 type of D2
file in the MPQ despite they have the same extension. The first type is mainly used to
retrieve the Animation Speed and the Number of Frames per Direction of any animation
and is the source of common troubles when making a new animation. The second type
of D2 format contains the copy of many COF. These last D2 files are preloaded at the
start of the game, so when the game needs to read a COF, it first looks in that D2 files,
and if the COF is not here, it’ll looks for the regular one instead.

D2 files of type 1 (animations datas), used by the game:

 Data\Global\AnimData.d2

D2 files of type 2 (copy of many COF), used by the game:

 Data\Global\chars_cof.d2 Player Characters
 Data\Global\cmncof_a1.d2 COF needed for Act 1
 Data\Global\cmncof_a2.d2 for Act 2
 Data\Global\cmncof_a3.d2 for Act 3
 Data\Global\cmncof_a4.d2 for Act 4
 Data\Global\cmncof_a6.d2 for Act 5 (that’s really cmncof_a6.d2)

• TXT is the common Text file format found in Data\Global\Excel. So which file does we
need from there? Objects.txt, because it have an Animation Speed data that override
the one we can find in AnimData.d2. That’s only for Objects of course, not the Player
Characters, Monsters, Overlays or Missiles animations.

19 / 54

2.9. Naming convention of Animation’s files

With so many different combinations of Players, Player’s Mode, Weapon’s Class, Components,
Items… the need to order all of that that comes quickly. We’ll see the naming convention used
for COF and DCC, and the Directories used.

2.9.1. COF

The naming of a COF is simple. It has 7 letters for its name, then come the extension. The
name is composed of 3 elements, the Token, the Mode, and the Weapon’s Class. For our
Barbarian, here’s the name of the cof that we’ll use: BATN1SS.cof

 <Token> <Mode> <Weapon’s Class> <Extension>

<Token> = BA
<Mode> = TN
<Weapon’s Class> = 1SS
<Extension> = .cof

2.9.2. DCC

The naming of the DCC follow the model of a COF, it just introduces 2 new elements: the Layer
code, and the Item code for that Layer. That shows a relation between the DCC and the COF.
The Helm animation file that our Barbarian will use is: BAHDBHMTNHTH.dcc

<Token> <Layer> <Item> <Mode> < Weapon’s Class in COF> <Extension>

<Token> = BA
<Layer> = HD
<Item> = BHM
<Mode> = TN
<Weapon’s Class> = HTH
<Extension> = .dcc

But why the <Weapon’s Class> of the DCC is HTH while the COF that we’ll use have the
<Weapon’s Class> 1SS? Shouldn’t it be 1SS too? No, because there’s something special in the
COF: it doesn’t have only tables for Layer drawing priority, it also has some datas for these
Layers, and without going into details, one of them is the Weapon’s Class to used for the DCC
of that Layer.

Here’s the example of our BATN1SS.cof. In that COF the Layers LA, RA, RH and LH are set to
use DCC with a Weapon’s Class 1SS (that’s seems normal for a 1SS COF after all). But the
other Layers (LG, TR, S1, S2 and HD) are set to only accept HTH DCC.

Why? Just to avoid to makes tons of useless animation. After all, should the Head Layer of the
Barbarian be very different in Town Neutral Mode when he has no weapon than when he has 2
weapons? Do you really see a problem in the 2 images below for using the exact same Head
for those 2 different animations? Obviously no.

20 / 54

2.9.3 Directories

As you know, all Unit Types (Player Character, Monster, Object and such) have their Base
Path. In that Directory we find lots of other directories: one for each Token. For our Barbarian
it’s the Data\Global\Chars\BA directory.

Under that Token Directory there is always a COF directory, all the COF of that Unit are in
there, like for our BATN1SS.cof. If our Unit has a Palshift.dat, we can find it there too. We
won’t find any for Player Characters, but we will for most of the Monsters.

Under the Token Directory, at the same level of the COF directory, we can find several Layer
directories, like HD, TR, LG, S1 … all the DCC of each particularly Layer are in there. For
instance our DCC BAHDBHMTNHTH.dcc will be found in the HD Directory.

<Base Path>

<Token>

 <COF>

 *.cof

 (Palshift.dat)

 <Layer>

 *.dcc of that layer (there are *.dc6 in some cases)

21 / 54

2.10. Finding the good DCC of the Armor

Before we launch DRTester, there’s a last thing we need to learn. Despite we have already
found what are the DCC that will be used for some Layers (Right & Left hands, and the Head),
there’s still a problem with the Armor. In Data\Global\Excel\Armor.txt we can see that the
armors are using more than 1 layer component in order to produce the final armor image.
Let’s take the example of our Gothic Plate:

Name code rArm lArm Torso Legs rSPad lSPad
Gothic Plate gth 2 2 1 2 2 2

The numbers are telling exactly which DCC for each Layer will be taking. That’s why when we
change the armor of the Player in the game, sometimes just 1 Shoulder change and not the
Torso: the 2 armors were using the exact same 5 components (rArm, lArm, Torso, Legs,
lSPad) but a different Right Shoulder (rSPad).

Now, let’s open Data\Global\Excel\ArmType.txt:

Name Token
Lite lit
Medium med
Heavy hvy

We have 3 lines in ArmType.txt, and coincidently in Armor.txt we can only find values from
0 to 2 in the components. Obviously the numbers 0, 1 and 2 are the indexes of the line in
ArmType.txt (starting the count from 0 and not 1).

So now we can deduce that our Gothic Plate will use these DCC for making the final Armor
image:

Component Layer Value Token DCC
rArm RA 2 hvy BARAHVYTN1SS
lArm LA 2 hvy BALAHVYTN1SS
Torso TR 1 med BATRMEDTNHTH
Legs LG 2 hvy BALGHVYTNHTH
rSPad S1 2 hvy BAS1HVYTNHTH
lSPad S2 2 hvy BAS2HVYTNHTH

While we’re at it, here are the DCC for the other layers, accordingly to the datas we found at
the start of the exercise. That’s the alternategfx column that was giving the DCC code:

Layer alternategfx DCC
HD BHM BAHDBHMTNHTH
LH MAC BALHMACTN1SS
RH CLM BARHCLMTN1SS

22 / 54

2.11. Comparing the 2 versions of DRTester

We’re now almost ready to use DRTester, but since there are 2 versions in the File Center, let’s
see what their differences are.

 Version
 28 Nov 2002 01 Dec 2002
Title Screen
Zooming Animations
DC6 Items Good
DC6 Animations More or less useable
COF with DC6 layers Not useable
Alpha-Blended Animations
DS1 Maps orientation
DS1 Maps Wall Layers

Some more detailed explanations:

 Title Screen: In the 1st Version the Title Screen when you launch DRTest.exe is flipped
vertically. In the 2nd Version the problem is not here. That’s an easy way to distinguish
the 2 Versions. The problem is that all DC6 in the 1st version are flipped.

 Zooming Animations: In the 1st version no particularly problems, but in the 2nd
version some zoom values can be screwed, depending of your Operating System
and / or Video Card, as show below:

Zoom x2 Screwed Zoom x3

 DC6 Items: Like for the Title Screen, they’re flipped vertically in the 1st version

 DC6 Animations: Idem

 COF with DC6 layers: In the 1st version, you simply can’t use them. Therefore you
can’t see Mephisto, or the Wings of Tyrael for instance. But in the 2nd version no
problems, as DRTester is now able to handle both DCC and DC6 layers indifferently.

23 / 54

 Alpha-Blended Animations: In the 1st version the Alpha Blending is not implemented,
but you can use it in the 2nd version if you want (just choose a PL2).

Without Alpha-Blending With Alpha-Blending

 DS1 Maps orientation: Like for the DC6, the Tiles are flipped in the 1st version, so you
can hardly browse DS1. In the 2nd version the orientation problem is gone (but another
one has appeared):

Flipped in version 1 “Normal” in version 2

 DS1 Maps Wall Layers: In the 2nd version the Wall Layers are using a colormap, this
was for a testing purpose. At first, they’re looking weird, but by choosing the PL2 of the
Act and the good Index (306 or 562) we can make them appear almost normal again:

By default

With Act1\Pal.Pl2
and the Index 562

In all versions the Preview button above the image allow you to view the map
correctly, walls becoming normal (no flipping and no transparency problems in there).

24 / 54

2.12. Working with DRTester

Now the Theory is finish. You have learned:

 How to find in the .txt the informations you need (color effects, DCC code of all Layers)
 What are Player’s Mode and Weapon’s Class, therefore which COF to use
 Under which Path and Token are localized the Animations files
 That Animations have a variable speed

From now on, I’ll use the last version of DRTester (01 Dec 2002, available on my site). We
don’t really need the Zoom, so the fact that it can be screwed is not a problem. And after all,
this version is a lot better than the precedent

We’ll use DRTester to easily extract all the files we need, and to check if we have chosen all
the correct Animations files.

Let’s launch DRTest.exe. After a moment we’ll have this window:

25 / 54

Here are all the commands available in the Menu bar:

You can see a list of 4 MPQ files: patchd2.mpq, d2exp.mpq, d2data.mpq and
d2char.mpq. DRTester can only browse one MPQ at a time, so this is the place where you can
switch between all of them. Just choose another MPQ and you’ll browse that new one, making
the corresponding name checked in the Menu, instead of the precedent one. Since DRTester
was primarily made to test the DCC format, that’s the MPQ d2char.mpq which is checked by
default. So each time you’re opening DRTester you’re browsing the Player Character’s
Animations. This is exactly what we need for our Barbarian.

When you’re on a file, you can extract it with the menu Save to Local File. It can be any kind
of file like DCC, COF, DT1, DS1, DC6 … but it can also be any kind of file present in the MPQ
not supported by DRTester, like the TXT. Depending of the type of the file you’re asking to
save, you can be prompted to save not only the file you’re currently viewing, but also the
related files, and that’s pretty useful:

If you’re viewing a COF you’ll
be prompted to save also all
the DCC that this COF can
use

If you’re viewing a DS1 you’ll
be prompted to save also the
DT1 of that Map

When saving a file, DRTester always use its Local Directory. The first time, that directory
doesn’t exist. But right after you’ve save at least 1 file, you’ll find a data directory in the
directory of DRTester, and the structure in there is exactly the same as in the MPQ.

26 / 54

Here’s an example. Here I was browsing the file Data\Global\Chars\BA\cof\BATN1SS.cof
in DRTester, and then I saved it, with its related DCC. All the files were saved on my disk using
their original structure in the MPQ, and not only the COF but also all the DCC that this COF can
use were automatically saved:

Here are the number of files that
were created in all directories:

COF : only 1, BATN1SS.COF
HD : 9
LA : 3
LG : 3
LH : 17
RA : 3
RH : 17
S1 : 3
S2 : 3
TR : 3

So, in total, 62 files were created
with just 1 click.

There’s 1 file that is not save tough. If you’re browsing the Animations of a Monster, and
decide to save a COF and its related files, it will save the COF and DCC as expected, but it
won’t save the COF\Palshift.dat of that Monster. It’s not really a problem, since you can
manually select it, then save it, and it’ll be at its right place in the local directory, but it’s
important to remember if you’re planning to extract Monsters Animations: don’t forget to save
the Palshift.dat file too, if there’s one with that Monster.

Now, I use the File / d2data.mpq
command. Then I replace the current file
name in the File Selection Box by the file
data\global\excel\armor.txt, I select
that file in the window just below, and
finally I use the command File / Save to
Local File.

Now my Local Directory has not only the
precedent COF and DCC, but it also has the
file Armor.txt at the good place.

Then if I use the command Options /
Rebuild Local List, I’ll create a text file
named (listfile) in the directory of DRTester,
and it’ll contain all the files and directories I
have in my Local Directory, not only the usual
Diablo II files but any files / directories that
are under the data directory.

Now I’m able to use the command File /
Local Path: it’s telling DRTester to only works
with the Local Directory, not a MPQ. It’ll only
display the files that are in that (listfile) text
file, so you can edit it to filter the list if you
want.

27 / 54

The commands Options / Use List 0 to Options / Use List 3 works the same way as the
File / Local Path command, but while the command File / Local Path force DRTester to use
a file named (listfile) to browse the local directory, the commands Options / Use List n
force DRTester to use a file named (listfile).n, in order to see only the files you want in the
corresponding MPQ: when these commands are checked, these (listfile).n files in your
DRTester directory overrides the (listfile) found in the corresponding MPQ.

For instance, if you want to only see the file Data\Global\Excel\Armor.txt while browsing
d2exp.mpq, you’ll create a text file with just that line in it, you’ll save it in the directory of
DRTester under the name (listfile).1 and you’ll check the command Options / Use List 1. In
DRTester, when browsing the d2exp.mpq, you’ll now only see 1 file, armor.txt.

Note that it can also be useful to view more files in a MPQ: assuming there are such unknown
files in a MPQ, and that you know exactly their paths & names, simply add their full paths in
the (listfile).n files, check the corresponding command option, and you’ll now be able to
browse them in DRTester.

The extension numbers are following the order of the mpq in the File menu:

 patchd2.mpq = (listfile).0
 d2exp.mpq = (listfile).1
 d2data.mpq = (listfile).2
 d2char.mpq = (listfile).3

You may think the use of (listfile).n files are weird, but it’s not. To understand the logic
behind them, you must know that despite MPQ are something like ZIP archives, there’s a big
difference for the end-user: in a ZIP there’s a list of the files, but this list is not necessary
complete in the MPQ: when reading a MPQ, a program is assuming to know exactly where to
find it. Some MPQ browsing programs are reading the internal (listfile) in the MPQ (like CV5),
while others need an external list (like MPQView). So CV5 is easy to use since it don’t require
to have a file’s list, but that means that it’s depending of that internal file… and that’s why you
can’t view all the sounds in d2sfx.mpq: all the .wav are missing from the internal file’s list. On
the opposite, as long as these file names are in the file’s list of MPQView, you’ll be able to see
and extract them with this editor. DRTester is giving you both functionalities: by default it’s
using the internal file’s list like CV5, but if you need, you can have the full control on this file’s
list by using external list like MPQView.

The command Options / Update Frames can be checked to force DRTester to update the
Frame field when running an animation. On slow system, you should avoid using it, but if you
decide to use it, then the Frame combo-box will automatically change its frame number when
an animation is running. In the other case, this number will just stay at the last value you used
(but the animation will still run). This is just an option to link the frame Number in the Frame
field with the current frame that is displayed.

The command Options / Background Color allow you to change the… background color,
hard to guess, isn’t it? When viewing Characters animations, since some part can be dark, it’s
interesting in that case to set that color to gray, or white (or whatever else you prefer), but for
some overlays that are using alpha-blending, it’s sometimes more interesting to see them with
a black background. Just do as you want.

28 / 54

2.13. Extracting the Barbarian animation files

I’ll stop to explain in detail DRTester for now, to allow some practice. Let’s extract all the files
we’ll need later to make the animation.

Launch DRTester. After some seconds, we’re browsing the d2char.mpq (so no need to go into
the File menu to choose another MPQ).

In the file selector, type data\global\CHARS\BA\COF\BATN1SS.COF, and click on that file
name in the list below.

Now, just to make our job easy (but it’s absolutely not necessary for the purpose of just
extracting files), change the background color to White, click on the button 1 time, click
somewhere on the image, maintain the mouse button pressed, move the Barbarian in the
middle of the image (this is know as the “drag’ n drop” manipulation), and you should now
have a window close to this one:

Not bad, but it’s not exactly our Barbarian. So now, let’s give him his good equipment.

29 / 54

On the upper / right corner you can see the Layer & Class windows. This is here that we’ll
change each layer to its own good item.

In the left window, the HD layer is already selected, and by chance it’s the item we want (the
BHM). So now let’s proceed to the TR layer: click on TR in the left window, and chose MED in
the right window. Immediately after having clicking on MED, the image is updated. Do the
same for the other layers, in order to set all layers correctly:

Layer Class
HD BHM
TR MED
LG HVY
RA HVY
LA HVY
RH CLM
LH MAC
SH None
S1 HVY
S2 HVY
S3 None
S4 None
S5 None
S6 None
S7 None
S8 None

This will give you this image:

Except for the colors, this is our Barbarian. Now, select the command File / Save to Local
File, and you’ll be prompted to save the related DCC files also. Choose YES.

We have finish with DRTester: we have extracted the COF, all the DCC of that COF, and we
have check that this is the correct animation. Of course, it was a bit quick, so you can play
with DRTester, and check how useful it is: play with the buttons , ,

, , ; click on the image with the Right mouse button, maintain it pressed,
and move left & right: the animation is facing other directions. Use the button, try
other items on several layers, try other COF… and when you’ll be tired of it, just quit DRTester.

Note: the DCC that are saved when you’re saving a COF are ALL the DCC this COF can use, not
only the ones your current displayed animation is using. So you don’t have to select all layers
one by one to give them their correct item animation. But since it’s a quick and easy way to
find the good DCC, you should do it, at least to prepare your work with Merge_dcc, if not to be
sure that the DCC you’ll use are the good ones.

30 / 54

2.14. Configuring Merge_dcc for the Barbarian

In the directory of DRTester, go into the directory Data\Global\CHARS, and copy the BA
directory into the merge_dcc directory:

I won’t go into detailed explanations (the documentation that comes with the program is there
for that purpose after all), so just open the file Merge_dcc.ini and let’s configure it for our
Barbarian animation. The first 2 lines will be:

format=pcx
cof=BATN1SS

Now, let’s configure each layer. First, the HD layer. We already know it’s the BHM file.

HD=BHM

But this won’t produce any color effect. So, let’s remember what we found in the 2.3.2.1.
section: colormap file is grey2.dat, and transformcolor is 12. So we complete the line as
follow:

HD=BHM:grey2.dat:12

Proceed the same way for all the other layers, and the .ini will become something like this:

format=pcx
cof=BATN1SS
HD=BHM:grey2.dat:12
LA=HVY:grey2.dat:0
LG=HVY:grey2.dat:0
RA=HVY:grey2.dat:0
S1=HVY:grey2.dat:0
S2=HVY:grey2.dat:0
TR=MED:grey2.dat:0
RH=CLM:grey.dat:3
LH=MAC:grey.dat:7

31 / 54

Now, launch merge_dcc.exe, and after some seconds you’ll have 256 PCX files, from
D00-(04)-F000.PCX to D15-(15)-F015.PCX.

Here’s an example. It’s the frame 11 of the direction
2. You can easily see that the Helm has the correct
color, and despite it’s not as obvious, the weapons
too have their correct colors.

If you wonder why on Earth the armor is not gray…
it’s just because the very first screenshot of that
tutorial was taken while the game was in full-screen
mode, and in this mode the settings of the Gamma
and Contrast takes effect… and I have a dark screen,
so I’m using bright settings… not mentioning that
the screenshot was a JPEG, which don’t helps to
have an accurate image (JPEG is an image format
with loss of quality)

D02-(00)-F011.PCX

But if we now compare a screenshot taken in windowed mode (with a third party
program which can capture exactly the image), and the same frame made by
merge_dcc… they’re the same:

Accurate screenshot,
in windowed mode

D00-(04)-F000.PCX,
from Merge_dcc

32 / 54

2.15. Making the shadow of 1 frame

Now that we have all frames of the Barbarian, we can make an animated GIF. But right now I’ll
show you how the shadows are done in the game. To make it interesting, I’ll consider that
we’ll make a simple Avatar for the Phrozen Keep forums. Such an Avatar is required to be at
most 100 * 100 pixels, and less than 60 KB. I’ll use Paint Shop Pro version 6.00, but the
method is really simple to use with any other decent image editor:

Take the frame Fill its shape
with shadows

 Reduce height
by 50 %

 Skew it at
45° left

 Done!

So, let’s do it with Paint Shop Pro. First, open the frame you want (here the very first) in the
editor. Click on the Dropper Tool icon, right-click somewhere on the background color of the
image, and in the Color Palette menu left-click on the foreground color and choose the color of
the shadow you like, here a mid-gray (color of index 29 in the D2 palette):

Dropper Tool icon Pick background color Choose foreground
color for shadow

In the menu bar, choose Window / Duplicate (or use the Shift + D shortcut). This creates a
new image, and starting from now we’ll work only on this last one. Choose Selection / Select
All (or use the Ctrl + A shortcut), this select all pixels of the image. Choose Selection /
Modify / Transparent Color (or use the Ctrl + T shortcut), and choose the Background
color in the combo box, with a tolerance of 0, you’ll now have all pixels selected except the
ones in the background, therefore your selection is now the shape of the Character.

Transparent pixels are in
the background color

 Shape selected

33 / 54

In the Color Palette menu, click on the icon with the 2 arrows, to switch the Foreground and
the Background colors, press the DEL key, and switch back the colors. You have filled the
shape of the Character with shadows.

Switch the colors Press DEL Switch colors back

Now, choose the menu command Image / Resize (or use the Shift + S shortcut), uncheck
the Check Box “Maintain Aspect Ratio” if this one is selected, and then use a 100 % resize
dimension for the width, and a 50 % resize dimension for the height.

Resize 50 % height Shadow with good height

We can now use the “Skew” deformation… except that this command only works in true color
images, not 256 colors ones. So let’s start by resampling the image to True Colors. Choose the
menu command Colors / Increase Color Depth / 16 Million Colors (24 bits). Nothing
seems to change, but now in the bottom / right corner of Paint Shop Pro you can read that the
image is in a 24-bpp mode:

34 / 54

Now let’s deform the image. Choose the menu command Image / Deformations / Skew…
and in the window that appear, choose an horizontal skew of –45 and a vertical skew of 0.

Horizontal skew of –45 Shadow like in the game

It’s almost finished now. In the Background color, choose the Cyan color (Red=0, Green=255,
Blue=255), create a new image of 100 * 100 pixels, in 16 Million Colors mode, with
Background color, select the shape of the shadow and paste it into this image, do the same for
the Body, downsample the image to 256 colors, set the Cyan color to be the transparency
color, save it as a GIF, and it’s done:

Pick Cyan as
Background

 Create a new image with these settings The new image,
empty for now

35 / 54

Select the shape
of the Shadow

 Copy / Paste as
New Selection

 Select the shape
of the Body

Copy / Paste as
New Selection

 Resample the image to 256 colors

Set the Transparency to the Background color Save the image as a GIF, and

you have a new Avatar.

Note: Merge_dcc should be able to draw the shadows for you in a future version, as it’s not
really difficult for this program, while it’s a time-consuming operation for the end-user if he
needs to make several of them, not mentioning that the shadows must be placed at the good
offsets too…

For the purpose of just 1 frame, as for this Avatar example, it’s ok, but I don’t recommend you
to plan to make an animated GIF and makes manually the shadows for EACH frames.

36 / 54

2.16. Finding the Barbarian Animation Speed

This time we won’t make any shadow; we’ll just take the frames of 1 direction and animate it
at the good speed. I’ll use Animation Shop 2, but you can use Gamani Movie Gear to make
a GIF too (but don’t ask me how, as I have never used it).

First, what will be the speed of the animation? The answer is in Data\Global\AnimData.D2.
Open DRTester, choose the command File / d2exp.mpq (to have the most up-to-date
AnimData.d2), select the AnimData.d2 file, and save it (File / Save to Local File). You can
now quit DRTester.

Copy AnimData.d2 from the data\global sub-directory of DRTester into the animdata_edit
directory. Now, launch Extract.bat and the file animdata.txt is created. Open this TXT in
Excel.

The first column in this tabulated TXT file is the name of a COF. The 2nd is not interesting for
us, but the 3rd is the Animation Speed we want. So let’s first find the COF BATN1SS: in Excel
type Ctrl + F, and enter the string BATN1SS. It’s at the Row 3385. Now check the 3rd
column: you can read a value of 80. But what does it means?

First, you must know that the game logic speed is hardcoded to 25 ticks per second. Now, this
number in the “AnimationSpeed” column is a relative speed. 256 means that the animation will
be displayed at 100% the rate of 25 fps, 128 will be at 50%, 64 will be at 25%, 512 will be at
200%, and so on… If you wonder why we find 1/256th instead of %, that’s because it’s easier
for computers to count with numbers of power of 2, but also to have an extra precision.

So our Barbarian animation has a relative 80/256th animation speed of 25 fps (Frames Per
Second). Just by curiosity, how many fps does it represents?

25 fps * 80 / 256 = 7.8125 fps

To make it simple, you can consider that the game is running this animation at 8 fps. But in an
Animated GIF, the speed info is not in fps. Instead, it’s a delay that indicates how long a frame
is displayed before the next one appears. This delay is a number of 1/100th of a second: a
delay of 100 for a frame will display it for 1 second, a number of 200 will display it for 2
seconds, 10 will display it for 1/10th of a second, and so on… So, what will be our delay?

100 / (25 * 80 * 256) = 100 / 7.8125 = 12.8

Our delay will then be 13 of 1/100th of a second between each frame. As you see, our
Barbarian animation will be almost the same as in the game. Not exactly, but we shouldn’t
notice it.

Note: It’s important to know that this damn Microsoft Internet Explorer usually screw up the
GIF animations, since it can’t display animated GIF with a delay less than 10, so animated GIF
quicker than 10 fps will be screwed (in AnimData.D2 such animations have an Animation
Speed greater or equal to 108).

For our Barbarian it’s not a problem (the delay being 13), but for other animations it can
become one. I’ll explain later how to counter that effect, but in short it’ll require to set the GIF
delay to 10, and to skip some frames here and there.

37 / 54

For reference, here’s a table that gives the corresponding Delay between each frames and the
global Animation’s rate in frames per second, for all the different values of Animation Speed
found in AnimData.D2:

Animation
Speed

GIF
Delay

Frames
per second

24 42.67 2.34
32 32.00 3.13
40 25.60 3.91
48 21.33 4.69
56 18.29 5.47
64 16.00 6.25
72 14.22 7.03
80 12.80 7.81
88 11.64 8.59
96 10.67 9.38

104 9.85 10.16
112 9.14 10.94
120 8.53 11.72
128 8.00 12.50
136 7.53 13.28
144 7.11 14.06
152 6.74 14.84
160 6.40 15.63
168 6.10 16.41
176 5.82 17.19

Animation
Speed

GIF
Delay

Frames
per second

184 5.57 17.97
188 5.45 18.36
192 5.33 18.75
200 5.12 19.53
208 4.92 20.31
216 4.74 21.09
224 4.57 21.88
232 4.41 22.66
240 4.27 23.44
248 4.13 24.22
255 4.02 24.90
256 4.00 25.00
260 3.94 25.39
272 3.76 26.56
288 3.56 28.13
336 3.05 32.81
344 2.98 33.59
376 2.72 36.72
488 2.10 47.66
512 2.00 50.00

Working with MS Internet Explorer

Now, here’s how to handle the case of an animation with a speed greater than 10 fps in order
to be displayed “correctly” in Microsoft Internet Explorer. Let’s take the example of the
BATW1SS animation. In AnimData.d2 this animation has a speed of 256, meaning it’ll be
display at 25 fps, or if you prefer each frame should be displayed for 4/100th of a second in an
animated GIF. This COF has 8 frames. The problem is that we’ll use a delay of 10 instead of 4
in the GIF, so we have to skip some frames.

First, let’s make a table that tells when each frame is displayed normally, here at 25 fps with
4/100th of a second between each frame. Then, let’s take the frames that are displayed each
10/100th of a second.

Frame 0 1 2 3 4 5 6 7
Displayed at tick 0 4 8 12 16 20 24 28

The frame 0 is always displayed. Then, 10/100th of a second later, which frame is displayed?
This is not the 3 because this one is displayed only at tick 12. The frame 2 is displayed from
tick 8 to tick 11, so this is this one that we’ll take for tick 10. At tick 20 that’s the frame 5. And
then the animation loops.

So, if you want to make a normal animated GIF of the BATW1SS animation, you’ll take
frames 0 to 7 with a delay of 4/100th of a second between each frame.

But if you want this animation to be displayed at the apparent good speed in MS Internet
Explorer, you’ll have to take only frames 0, 2 and 5, and choose a delay of 10/100th of a
second between each frame.

38 / 54

2.17. Creating new frames with transparency

This time we have all we need: the frames of the animation (the ones given by Merge_dcc),
and the corresponding animation’s speed. There’s just a small problem if you’re a
perfectionist: with Animation Shop 2 you can’t simply set the transparency of the GIF to a
given palette index. Since our frames are in .PCX format, no transparency is defined in the files
(BMP and PCX are simple image formats which don’t handle transparency at all). If we were
creating the GIF right now, the animation would have a gray background. Not really a problem,
but it’s easy to solve, and it isn’t that much works.

Note: If you’re not using Animation Shop 2 for making your animated GIF (for instance if
you’re using Gamani Movie Gear) then maybe you don’t need to read that chapter, as it may
be possible in your other editor to directly set the palette index 0 to be transparent. I don’t
know, so just do as you need.

Ok so, before we loads the frames in Animation Shop 2,follow these steps:

 Open Paint Shop Pro
 Drag’n Drop the 16 Barbarian frames into Paint Shop Pro (files D00-(04)-Fnnn.PCX)
 With the Dropper Tool, pick the Gray color of an image as the background color
 For each frames:

o Set the Palette Transparency to be this gray color (Shift + Ctrl + V shortcut)
o Save this modified frame as a GIF (F12 shortcut)

 You can now delete the PCX if you want, as we’ll only use the GIF frames

Select the PCX frames Drag’n drop them into PSP

Set Transparency Save as… a GIF With these options

39 / 54

2.18. Creating the animated GIF of the Barbarian

This is really quick and easy with the help of the Wizard: open Animation Shop 2, click on

the Animation Wizard icon and follow these steps:

Same size as the first image Set Background to transparent

This won’t happen in our frames,
so choose default options

Play it indefinitely, with a delay of 13

Click on the “Add images…” button Select the GIF frames of the Barbarian

Hint: Select the files from last to first
(click on the last, then Shift + click on the first)

40 / 54

That way, no need to put back the first frame
to the top here, as it sometimes happen

It’s done

Now, click on the View Animation icon and you have a window looking like this:

You shouldn’t have any modifications to make, the background is transparent, and the delay
for all frames is 13.

41 / 54

Since all is ok, just choose Save in the File menu, and follow these steps:

Choose a name Click on the “Customize” button

Choose your favorite color setting… … but if you’re planning to use your GIF
with CV5, you’d better set these ones

as they’re defined here

And it’s done; you finally have an animated GIF of a Barbarian exactly as he is in the B.Net
channels. If you’re one of that person that keep tracks of his inventory, I think you’ll
appreciate the possibility to add these animations. You can also make your own animated
Avatar this way too, or maybe you’ll import it into the Mod of another Game?

If you were planning to create an animated GIF for making new monsters animation (for
instance, an Amazon with a Buriza as a replacement of a Corrupted Rogue), this is also the
way you can do it, except that instead of making an animated GIF with only 1 direction you’ll
choose 8 directions (and you’ll keep the gray background, don’t make new GIF frames from
the PCX with PSP, use directly the PCX). But making a new monster is another story. It’s not
the purpose of this tutorial as they’re already others that teach how to make new monsters. I
just hope that what you have learned here had helped you to understand better how the
animations in Diablo II are done.

Next chapters will deals with special cases, but compare to the long way we took to make the
Barbarian animation, they’ll be very quick, because now you already know all that was needed
to first understand the internal mechanism of D2 animations. These chapters will now just
deals with some few things that weren’t already explained, so they should go to the point
quickly.

42 / 54

3. EXERCISE 2: A FALLEN

3.1. Overview

Extracting a Monster is not very different than for a Player Character, and it’s even easier as
Monsters have less colormaps possibilities. Like Player animations, Monsters animations are
composed of the same layers, modes and weapon classes… except they just lack some.

The Fallen we’ll recreate in animated GIF.

In the game, his name is “Carver”

3.2. Animation Token

In Diablo 2 version up to 1.09d, the Token data is stored into MonType.txt, but in version
1.10, due to the great rework of some internal systems, the Token is stored in MonStats.txt. In
fact, there are so many differences that we’ll study the 2 versions.

3.2.1. Animation Token in 1.09d

In this version we have to take care of a small but important thing: there’s not 1 but 2 Token
columns for Monsters, one in MonType.txt and the other in MonStats.txt. You have to know
that the Token in MonType.txt is the one that the game uses as the base directory of all the
Monster’s animations (.COF, .DCC, .DC6), while the Token in MonStats.txt is used as the
directory where the file PalShift.dat (color variants definitions for 1 monster) is retrieved.
That’s why in 1.09 Mods it’s possible to easily have Fallen animations that are using Tomb
Viper colormaps. This trick is not used here for our Fallens, but it was important to known.

So let’s open MonType.txt in Excel. If we search the string Fallen, we’ll find 5 of them, from
“Enraged Fallen” to “Warped Fallen” (rows 21 to 25) and all of them are using a FA Token. FA
is therefore our Animation Token. Note that the names in MonType.txt are not the real one
used in the game.

3.2.2. Animation Token in 1.10

The 1.10 version of MonType.txt have nothing to do with its precedent structure. Here it’s not
a simple list of Tokens with number of direction for each mode, but rather a recursive list of
type of monsters, something like in ItemTypes.txt. In this version the only thing we can know
about the Fallens is that they’re demons, there’s nothing such as a Token column anymore.

But if we open the 1.10 version of MonStats.txt, we find again our Fallens at rows 21 to 25,
and if we check the Code column we’ll find the code FA, which is our Animation Token.

43 / 54

3.3. Finding the composition of the Carver

Now we have the Token of our Fallen, but which tint is he? If we play the game we’ll see that
the Carver is Blue, but how to reproduce the same effect with Merge_dcc?

First, we have to take the good PalShift.dat file. As mentioned before, the Token where to get
that file is either the same as the Animations of the Monster (in 1.10), or it can be different if
we’re using the 1.09d version, and in this case we have to check MonStats.txt.

Whatever the version you’re using, the result is still the same in the original game: the
PalShift.dat to use with these Animations is in the FA Directory, the same place as where the
other Animations files are (which is just all plain logic after all).

As always let’s use DRTester to extract all the animations files of the Fallen we need:

 Launch DRTester
 File / d2data.mpq
 Select the file: data\global\monsters\FA\COF\Faa1hth.cof
 File / Save to Local File, and choose to save the .DCC as well.
 Select the file: data\global\monsters\FA\COF\palshift.dat
 File / Save to Local File

We now have the .COF, the .DCC and the PalShift.dat of the Fallen. Let’s choose the layers
we’ll use. In 1.09d, the element of the monster were hardcoded, so you had to take
screenshots to know what a specific Monster was using as Weapons, Shield, Head, Armor… In
1.10 not only we have the exact list of the components, but we can also change them
(something we won’t do here). Since the Fallens are the same in both 1.09d and 1.10, we’ll
use the files of that last version, to avoid the harassing work of taking screenshots, and
checking all pixels.

In 1.10 MonStats.txt, the “Carver” has fallen2 in the column MonStatsEx. This means that
this Fallen is using the line in MonStats2.txt that have the Id fallen2. Open the file
MonStats2.txt in Excel and go to the row that have the Id set to Fallen2 (row 22). We’re
interested by all the columns from HDv (Head Variants) to S8v (Special8 Variants). These
columns indicate for each Layer what are all the possible choices of .DCC that the game can
use when it’s spawning a Monster. Here we have:

Column Value
TRv lit
RHv ssd,clb,axe
SHv nil,sml,buc,tch
S1v lit,med
S2v lit
S8v lit

If we use DRTester, and test in real-time these parameters, we’ll see that for the animated GIF
that we’ll create we’ll use these layer parameters for the FAA1HTH.COF:

Layer DCC
TR LIT
RH CLB
SH SML
S1 MED
All others None

As for the color variant of this Fallen, it’s again easy to find in the version 1.10: it’s the column
TransLvl, which is set to 1 for our Carver. If you want to test it with DRTester, use the
TransLvl value + 3, so with a PalShift index of 4 in our case. The difference is due to the fact
that in a PalShift.dat there are 8 colormaps (from 1 to 8 in DRTester), but the game never use
the 2 first, and start its numeration from the 3rd colormap, so 0 in TransLvl is 3 in DRTester.

44 / 54

3.4. Making the Carver frames with Merge_dcc

From the data directory of DRTester, copy the FA directory found under Data\Global\Monsters
to the Merge_dcc Directory.

Now, open Merge_dcc.ini and edit it like this:

format=pcx
cof=FAA1HTH
TR=LIT:3
RH=CLB:3
SH=SML:3
S1=MED:3

Launch Merge_dcc.exe and you’ll have all the frames of the Carver in 80 PCX images, from
D00-(04)-F000.PCX to D07-(03)-F009.PCX. Just keep the 10 PCX of direction 2 (D02-*.pcx),
as we just want to make a simple GIF with a Carver attacking in only 1 direction.

3.5. Making the animated GIF

Open animdata.txt (the .txt produced by Animdata_edit.exe) and search the row having
FAA1HTH: you’ll find an Animation Speed of 256 (25 fps, delay of 4 in a GIF).

If you want to make this animated GIF playing at the correct apparent speed in MS-Internet
Explorer, then you must take only the frames 0 2 5 and 7 and use a delay of 10 (not 4) in the
GIF:

Frame 0 1 2 3 4 5 6 7 8 9
Displayed at tick 0 4 8 12 16 20 24 28 32 36

You now have all the necessary informations to make our animated GIF:

45 / 54

4. EXERCISE 3: THE COUNTESS

4.1. Overview

The Super unique Monsters in the patch 1.10 have a different color system than the one used
in the patch 1.09D. Now they can use one of the 6 colormaps defined in the monster’s
Palshift.dat, or they can use one of the 22 first colormaps defined in
Data\Global\Monsters\RandTransforms.dat (found in d2data.mpq). This is how the Countess
appear in green in the game, while in her original palshift.dat there isn’t any green colormap:

The Countess in-game Palshift.dat, block 3 Palshift.dat, block 4 Palshift.dat, block 5

Palshift.dat, block 6 Palshift.dat, block 7 Palshift.dat, block 8 RandTransforms.dat,
block 9

4.2. Finding the Countess color variations

The patch 1.10 has introduced 3 new columns in SuperUniques.txt and MonStats2.txt. They
are Utrans, Utrans(N) and Utrans(H). If you open SuperUniques.txt, you’ll find that these 3
columns are set to 16 for the Countess line. This means that she’ll use the same color
variations in normal, nightmare and hell difficulties.

 Values 2 to 7 are using the Monster’s Palshift.dat blocks 3 to 8.
 Values 8 to 29 are using the RandTransforms.dat blocks 1 to 22.
 The values 1 and –1 means that no colormap is used, at all.
 The value 0 (or an empty cell) has different meanings depending of the text file:

o In MonStats2.txt, the game will use the Monster’s Palshift.dat, block 5.
o In SuperUniques.txt the game will use a random value, from 1 to 22.

 With any other value the game will use the Monster’s Palshift.dat, block 3.

Since the value for the Countess is 16, we’ll use the RandTransforms.dat, block 9.

46 / 54

Here’s a screenshot of DRTester:

Here we have find the correct DCC to assigned to each layers, selected the
RandTransforms.dat colormap file, and choose the block 9 from within. If we now compare the
image we have here, and the screenshot of the Countess in-game, they’re the same.

47 / 54

5. EXERCISE 4: ARCANE TELEPORT PAD

5.1. Overview

Objects are more or less like the other Animations. They too have layers, animation speed…
The main difference may be the fact they have their own modes. Just open ObjMode.txt, and
you’ll find that they’re using the modes Neutral, Opened, Operating, Special1… They also have
another big difference: they’re not using animdata.d2! Instead, their animations informations
are in Objects.txt, but we’ll see that later.

5.2. Get a necessary preview

Open DRTester. File / d2data.mpq. Select the file data\global\objects\7H\cof\7HNUHTH.COF.
File / Save to Local File, with DCC as well. You now have the COF and DCC of the Arcane
Teleport Pad. From a sub-directory of DRTester (data\global\objects of course), copy the
directory 7H, and paste it into the merge_dcc directory.

If you check in DRTester, you’ll see that this Arcane Teleport Pad is composed of 3 layers (TR,
S1 and S2), all of them have only 1 possible DCC choice: LIT.

We’re going to open all the different layers separately in Paint Shop Pro later, but to avoid
annoying offsets problems we’ll proceed like this: open merge_dcc.ini and type this:

format=pcx
cof=7HNUHTH
TR=LIT
S1=LIT
S2=LIT

Then launch merge_dcc.exe. If you open the file D00-(00)-F000.PCX you’ll have this image:

As you see that’s our Arcane Teleport Pad, and it’s looking
not too bad… except that it is surrounding by a black aura.
That black waves are in fact part of the red aura.

Why there’s no such problem of black waves in the game?
That’s because that aura layer is not draw “as-is” (which is
the case in merge_dcc), instead it use an alpha-blending
drawing mode. In this special mode, the luminance of the
pixel (its light level) defines its translucent level: the darker,
the more translucent; the brighter, the more visible.

We’ll use Paint Shop Pro to draw that Arcane Red Portal like
it should be, on the background of our choice, by handling
the different layers blending mode like in the game.

48 / 54

5.3. Get all layers frames

We will now extract all layers individually. That’s needed because all of them need to be draw
with a different blending mode in Paint Shop Pro. But before anything else, open the file
stdout.txt in the merge_dcc directory:

MERGE_DCC freeware 1.5, by Paul SIRAMY, 5 November 2002
DCC Decoder made with the precious help of Bilian BELCHEV
===
COF file = 7HNUHTH
directions = 1
frames per direction = 30
layers = 3
Layers list = TR S1 S2
dcc TR to load = 7H\TR\7HTRLITNUHTH.DCC (colormap = none, block = 0)
dcc S1 to load = 7H\S1\7HS1LITNUHTH.DCC (colormap = none, block = 0)
dcc S2 to load = 7H\S2\7HS2LITNUHTH.DCC (colormap = none, block = 0)
box = (-76, -131) - (60, 49) = 137 * 181 pixels

What is important here is the BOX definition. Merge_dcc took all the 3 layers of the animation,
placed them all on top of each others (respecting their own offsets), and kept the smallest box
that enclose all pixels, without any border. We’ll use the same BOX parameters for all the 3
different layers, that way we’ll have images that are not only the exact same size, but that can
also be place on top of each other without wondering about their offsets.

For the TR layer, open merge_dcc.ini and edit it like that:

format=pcx
cof=7HNUHTH
BOX=-76,-131,60,49
TR=LIT

Now launch Merge_dcc.exe. The files D00-(00)-F000.PCX to D00-(00)-F029.PCX are now all
the stone layer, without any aura, like this one:

TR layer is the Stone part of
the Arcane Teleport Pad

Create a directory somewhere on your hard disk (“Arcane Teleport Pad” for instance), create a
sub-directory inside (“TR”) and place these ‘stone’ .pcx right there.

49 / 54

Now edit merge_dcc.ini in order to extract the S1 layer the same way:

format=pcx
cof=7HNUHTH
BOX=-76,-131,60,49
S1=LIT

Create a “S1” directory in your “Arcane Teleport Pad” directory and place the ‘red aura’ .pcx
there.

Do the same for the S2 layer:

format=pcx
cof=7HNUHTH
BOX=-76,-131,60,49
S2=LIT

Create a “S2” directory in your “Arcane Teleport Pad” directory and place the ‘mask’ .pcx
there.

S1 layer is the Red Aura

S2 layer is a Mask

50 / 54

5.4. Handle layers in Paint Shop Pro

Open the first frames of all the 3 layers together in Paint Shop Pro:

If you check, you’ll see that these 3 images are exactly the same size: 137 x 181 pixels, all in
a 256 colors mode. We’ll now create our own background. Choose the command File / New,
and enter these parameters:

Then, in your Foreground color pick Blue, and for your Background color pick Black. Take the
Flood Fill tool, Toggle Tools Options Window and set it like that:

51 / 54

You can now fill the new image you have created with gradients of Blue and Black:

This will be our own background, where we will draw an
Arcane Teleport Pad that will looks like in the game. Of
course you can choose any other background, like a portion
of a web page where the animation will be placed, it’s up to
you, and the layer drawing manipulations will still be the
same anyway.

Now, we’ll place the 3 animation layers on top of this background, one after the other. Select
that background image, then choose the menu Layers / properties… and in the window that
appear, change the name of the background layer from Layer1 to Back, Blue-Black:

This is not necessary, but it’s better to have descriptive name when working with several
layers at once.

We’ll now place the Red Aura layer on top of that blue-dark background. Select the red aura
image, and choose the menu Colors / Edit palette… Then replace the Palette color index 0
from gray to black, and press OK: all the gray pixels are transformed into black. Edit / Copy,
select the background window, and Edit / Paste / As New Layer: the blue-black background
is now completely hidden by the red aura. Toggle the Layer Palette, and for the Layer1 (that
is already selected), choose the Screen Blending mode. Rename that Layer to Red Aura, and
we’re done for this layer:

52 / 54

We’ll now place the Stone layer. But we’ll use a small trick to help us. Select the Stone layer
window. Select a foreground color that is not the Palette index 0 (like white, index 255), zoom
several time in the image, and place a white pixel at the exact upper / left corner, and do the
same at the opposite (bottom / right corner). You can zoom back to 1:1.

Upper / Left white dot

Bottom / Right white dot

Click on the Background color, choose the Palette index 0 (gray) and press OK. Selection /
Select All, Selections / Modify / Transparent Colors, chooses Background color in the
menu, tolerance 0, and press OK: all the pixels of the stone are selected including the 2 white
dots (tough not obvious). Edit / Copy, select the background window, Edit / Paste as New
Layer, and the stone pixels are placed exactly where expected (that’s because of the 2 white
dots). Change the name of this layer to be Stone, and it’s done for that layer:

Proceed the same way for the Mask layer (2 white dots, select all but gray pixels, copy / paste
as new layer), name this new layer Mask, make this layer having only a 25% visibility,
move the Mask layer from the top to the place between the Red Aura layer and the Back,
Blue-Black layer (by drag’n drop the Mask layer field in the Layer Palette window), and it’s
done for that layer:

This will be enough for that Tutorial, but if you want to make an Animation, you have of course
to proceed the same way for all the frames of the Teleport Pad Animation (yep, that’s some
work). If you want to convert a layered image to a normal one, choose the command Layers /
Merge / Merge All (Flatten). Ha, a last note: don’t forget to remove the white dots

53 / 54

5.5. Finding Layers Blending Mode

Here we have set the Red Aura layer to use a ‘screen’ blending mode, and the Mask layer to
use a 75% translucent blending mode… but how do we know how to draw each layer in
Diablo 2?

In DRTester, pick the file data\global\objects\7h\cof\7hNUHTH.COF:

Well, it’s not beautiful, and you may think it’s even buggy, but not for long. Click on the
Bottom / Right ‘PL2’ button, and choose an Act Palette (Act 1 will be fine).

Anyway, that’s on this screen that we can learn how to draw each layer. On the middle / right
border of the window, we have Layer Flags:

TR = 05000101
S1 = 03010101
S2 = 00010101

The 2nd byte indicates if a blender mode is used. 00 means normal drawing, non-zero (01
usually) means the corresponding layer will be draw with a specific blender mode. In that case,
that’s the 1st byte that tells which effect will be use, following this table:

00 = 75 % translucency
01 = 50 % translucency
02 = 25 % translucency
03 = screen
04 = luminance
06 = not very well known, but it’s some kind of bright screen.

So for the Teleport Pad we have:

TR = 05 00 = normal drawing mode
S1 = 03 01 = screen blending mode
S2 = 00 01 = 75 % translucency blending mode

54 / 54

5.6. Animation Speed of Objects

Having the final frames of the Arcane Teleport Pad animation is good, but not enough. What is
its animation speed? As said before, Objects are not using animdata.d2, but rather
Objects.txt. In this file we find many columns, but for us, only the FrameDelta0 to
FrameDelta7 are interesting.

If you open ObjMode.txt, you’ll notice there are 8 modes:

Name Token Index
Neutral NU 0
Operating OP 1
Opened ON 2
Special1 S1 3
Special2 S2 4
Special3 S3 5
Special4 S4 6
Special5 S5 7

If we count them starting from 0, the last mode is index 7. So it’s now obvious that
FrameDelta0 is used for the NU mode, and FrameDelta7 for the S5 mode. Our Teleport Pad we
have made was using the NU mode, so we’ll look the value that’s in the FrameDelta0 column,
which is 256. Exactly like for the Animation Speed data in Animdata.d2, this speed is a relative
speed (in 256th) of 25 fps, so here the Teleport Pad is draw at a rate of 25 fps in the game.

Note that animations of Objects are a bit more complex than the Player Characters and
Monsters ones, because in Objects.txt we can find the columns FrameCnt0-7, CycleAnim0-7
and Start0-7, which are used for some animations like Tree of Inifuss: despite the COFs of that
Tree are made with 2 frames per direction, the DCC have only 1 frame. So if you try to play
that ‘animation’ in DRTester, the Tree blinks. If you now check the FrameCnt columns for the
Tree of Inifuss, you’ll see that they have only 1 frame per direction there. Datas in Objects.txt
take precedence against the COFs datas.

And that conclude the process of extracting Diablo II animations, with all its complexity of
layers, modes, animation speeds, drawing modes… You should now have all the necessary
knowledge to extract any animation from that great game. I hope it was interesting

Paul SIRAMY

